IPv6 Deployment Planning

Philip Smith <philip@apnic.net> APRICOT 2013 Singapore 19th Feb – 1st March 2013

Presentation Slides

Will be available on

- http://thyme.apnic.net/ftp/seminars/ APRICOT2013-IPv6-Planning.pdf
- And on the APRICOT 2013 website

Feel free to ask questions any time

Introduction

- Tutorial introduces the high level planning considerations which any network operator needs to be aware of prior to deploying IPv6
- Content applicable for:
 - Business decision makers
 - Network managers
 - Network engineers
 - Will also require implementation detail

Agenda

Goals
Network Audit
Network Optimisation
Procuring IPv6 Address Space
IPv6 Address plan
Deployment
Seeking IPv6 Transit
Customers

Goals

What do we want to achieve?

Goals

Ultimate aim is to provide IPv6 to our customers:

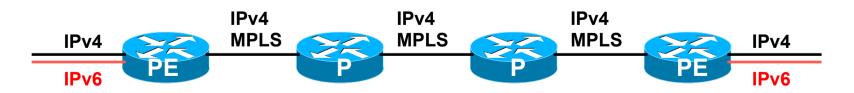
- Customers = end users
- Customers = content providers

Strategy depends on network transport:

- Native IP backbone
 - Dual Stack is the solution
- MPLS backbone (tunnels)
 - 6PE or 6VPE is the solution
 - The core infrastructure will remain IPv4 only

Native IP Backbone

Routers are the infrastructure


- Customer connections connect to the native backbone
- VPN services provided using GRE, IPSEC, IPinIP etc
- Providing IPv6 for customers means upgrading the native infrastructure to dual-stack

MPLS Backbone

Routers are the infrastructure

- Public and Private network access provided within the MPLS cloud
- The core network does NOT need to be IPv6 aware
- IPv6 access provided by 6PE or 6VPE
- Provider Edge routers need dual stack capability

Network Audit

What can run IPv6 today, and what needs to be upgraded?

Audit

■ First step in any deployment:

- Audit existing network infrastructure
- Primarily routers across backbone
 - Perhaps also critical servers and services (but not essential as initial focus is on routing infrastructure)

Process

Analyse each location/PoP

Document

- Router or any other L3 device
- RAM (installed and used)
- FLASH memory
- Software release versions
- Most network operators already keep track of this info
 If not, RANCID (www.shrubbery.net/rancid/) makes this very easy

Sanity check

- Check existing connectivity
- Remove unused configuration
- Shutdown and clean up unused interfaces

Software Issues (1)

- Does the existing software have IPv6 support?
 - Yes: deployment is straightforward
 - No: investigate cost of upgrade
- Is a software upgrade available?
 - Yes: is hardware suitably specified?
 - No: hardware replacement
- Implement software upgrade
 - Budget, purchase & schedule installation

Software Issues (2)

□ If existing software supports IPv6:

- Are deployed software versions consistent across infrastructure?
 - Recommend maximum of two variations (easier troubleshooting, bug tolerance, etc)

□ If existing software does not support IPv6:

- Cost of upgrade to a version which does?
- Testing for existing feature compatibility:
 - A software image with IPv6 may have "lost" features required for the existing operational network

Hardware Issues

Can hardware specification be upgraded (eg RAM, FLASH etc)?

- Yes: budget, purchase, installation
- No: hardware replacement

□ Hardware replacement:

- Assess suitable replacement product
- Analyse impact on operating network, existing services and customer

Result

- Once the previous steps are completed, entire network is running IPv6 capable software
- Deployment of IPv6 can now begin

Network Optimisation

Is the IPv4 network the best it can be?

Optimisation

- IPv4 networks have been deployed and operational for many years
 - Your network may fall into this category
- Optimisation means:
 - Does the interior routing protocol make sense?
 - Do all routing protocols have the latest best practices implemented?
 - Are the IGP metrics set so that primary and backup paths operate as expected?

Motivation for Optimisation

- IPv6 deployment (apart from MPLS cores) will be dual stack
 - Which means sitting alongside existing IPv4 configurations
- Aim is to avoid replicating IPv4 "shortcuts" or "mistakes" when deploying IPv6
 - IPv6 configuration will replicate existing IPv4 configuration
- Improvements in routing protocol BCPs should be deployed and tested for IPv4
 - Take the opportunity to "modernise" the network

Procuring IPv6 address space

Now we need addresses...

Getting IPv6 address space (1)

From your Regional Internet Registry

- Become a member of your Regional Internet Registry and get your own allocation
 Membership usually open to all network operators
- General allocation policies are outlined in RFC2050
 - RIR specific details for IPv6 allocations are listed on the individual RIR website
- Open to all organisations who are operating a network
- Receive a /32 (or larger if you will have more than 65k /48 assignments)

Getting IPv6 address space (2)

From your upstream ISP

- Receive a /48 from upstream ISP's IPv6 address block
- Receive more than one /48 if you have more than 65k subnets

■ If you need to multihome:

- Apply for a /48 assignment from your RIR
- Multihoming with provider's /48 will be operationally challenging
 - Provider policies, filters, etc

Address Planning

IPv6 address space available to each network operator is very large compared with IPv4

- Design a scalable plan
- Be aware of industry current practices
- Separation of infrastructure and customer addressing
- Distribution of address space according to function

Why Create an Addressing Plan?

- The options for an IPv4 addressing plan are severely limited:
 - Because of scarcity of addresses
 - Every address block has to be used efficiently
- IPv6 allows for a scalable addressing plan:
 - Security policies are easier to implement
 - Addresses are easier to trace
 - An efficient plan is scalable
 - An efficient plan also enables more efficient network management

Nibble Boundaries

- IPv6 offers network operators more flexibility with addressing plans
 - Network addressing can now be done on nibble boundaries

• For ease of operation

Rather than making maximum use of a very scarce resource

• With the resulting operational complexity

- A nibble boundary means subdividing address space based on the address numbering
 - Each number in IPv6 represents 4 bits
 - Which means that IPv6 addressing can be done on 4-bit boundaries

Nibble Boundaries – example

Consider the address block 2001:db8:0:10::/61

The range of addresses in this block are:

2001:0db8:0000:0010:0000:0000:0000 to 2001:0db8:0000:0017:ffff:ffff:ffff

- Note that this subnet only runs from 0010 to 0017.
 The adia case block is 2001 cdb 0:0:10::/(1
- The adjacent block is 2001:db8:0:18::/61

2001:0db8:0000:0018:0000:0000:0000:0000 to 2001:0db8:0000:001f:ffff:ffff:ffff

The address blocks don't use the entire nibble range

Nibble Boundaries – example

- Now consider the address block 2001:db8:0:10::/60
 - The range of addresses in this block are:

2001:0db8:0000:0010:0000:0000:0000:0000 to 2001:0db8:0000:001f:ffff:ffff:ffff

- Note that this subnet uses the entire nibble range, 0 to f
- Which makes the numbering plan for IPv6 simpler
 - This range can have a particular meaning within the ISP block (for example, infrastructure addressing for a particular PoP)

Addressing Plans – Infrastructure

- All Network Operators should obtain a /32 from their RIR
- Address block for router loop-back interfaces
 - Number all loopbacks out of one /64
 - /128 per loopback
- Address block for infrastructure (backbone)
 - /48 allows 65k subnets
 - /48 per region (for the largest multi-national networks)
 - /48 for whole backbone (for the majority of networks)
 - Infrastructure/backbone usually does NOT require regional/geographical addressing
 - Summarise between sites if it makes sense

Addressing Plans – Infrastructure

What about LANs?

/64 per LAN

What about Point-to-Point links?

- Protocol design expectation is that /64 is used
- /127 now recommended/standardised
 - http://www.rfc-editor.org/rfc/rfc6164.txt
 - (reserve /64 for the link, but address it as a /127)
- Other options:
 - /126s are being used (mimics IPv4 /30)
 - /112s are being used
 - Leaves final 16 bits free for node IDs
 - Some discussion about /80s, /96s and /120s too

Addressing Plans – Infrastructure

□ NOC:

- ISP NOC is "trusted" network and usually considered part of infrastructure /48
 - Contains management and monitoring systems
 - Hosts the network operations staff
 - take the last /60 (allows enough subnets)

Critical Services:

- Network Operator's critical services are part of the "trusted" network and should be considered part of the infrastructure /48
- For example, Anycast DNS, SMTP, POP3/IMAP, etc
 - **Take the second /64**
 - **•** (some operators use the first /64 instead)

Addressing Plans – ISP to Customer

Option One:

- Use ipv6 unnumbered
- Which means no global unicast ipv6 address on the pointto-point link
- Router adopts the specified interface's IPv6 address
 - Router doesn't actually need a global unicast IPv6 address to forward packets

```
interface loopback 0
ipv6 address 2001:db8::1/128
interface serial 1/0
ipv6 address unnumbered loopback 0
```

Addressing Plans – ISP to Customer

Option Two:

- Use the second /48 for point-to-point links
- Divide this /48 up between PoPs
- Example:
 - For 10 PoPs, dividing into 16, gives /52 per PoP
 - Each /52 gives 4096 point-to-point links
 - Adjust to suit!
- Useful if ISP monitors point-to-point link state for customers
 - Link addresses are untrusted, so do not want them in the first /48 used for the backbone &c
- Aggregate per router or per PoP and carry in iBGP (not ISIS/OSPF)

Customers get one /48

 Unless they have more than 65k subnets in which case they get a second /48 (and so on)

In typical deployments today:

- Several ISPs are giving small customers a /56 and single LAN end-sites a /64, e.g.:
 - /64 if end-site will only ever be a LAN
 - /56 for small end-sites (e.g. home/office/small business)
 - /48 for large end-sites
- This is another very active discussion area
- Observations:
 - Don't assume that a mobile endsite needs only a /64
 - Some operators are distributing /60s to their smallest customers!!

Consumer Broadband Example:

- DHCPv6 pool is a /48
 - DHCPv6 hands out /60 per customer
 - Which allows for 4096 customers per pool

Business Broadband Example:

- DHCPv6 pool is a /48
 - DHCPv6 hands out /56 per customer
 - Which allows for 256 customers per pool
- If BRAS has more than 256 business customers, increase pool to a /47
 - This allows for 512 customers at /56 per customer
- Increasing pool to /46 allows for 1024 customers
- BRAS announces entire pool as one block by iBGP

Business "leased line":

- /48 per customer
- One stop shop, no need for customer to revisit ISP for more addresses until all 65k subnets are used up
- Hosted services:
 - One physical server per vLAN
 - One /64 per vLAN
 - How many vLANs per PoP?
 - /48 reserved for entire hosted servers across backbone
 Internal sites will be subnets and carried by iBGP

Geographical delegations to Customers:

- Network Operator subdivides /32 address block into geographical chunks
- E.g. into /36s
 - Region 1: 2001:db8:1xxx::/36
 - **Region 2: 2001:db8:2xxx::/36**
 - Region 3: 2001:db8:3xxx::/36
 - etc
- Which gives 4096 /48s per region
- For Operational and Administrative ease
- Benefits for traffic engineering if Network Operator multihomes in each region

Sequential delegations to Customers:

- After carving off address space for network infrastructure, Network Operator simply assigns address space sequentially
- Eg:

Infrastructure:	2001:db8:0::/48
Customer P2P:	2001:db8:1::/48
Customer 1:	2001:db8:2::/48
Customer 2:	2001:db8:3::/48

□ etc

 Useful when there is no regional subdivision of network and no regional multihoming needs Addressing Plans – Routing Considerations

- Carry Broadband pools in iBGP across the backbone
 - Not in OSPF/ISIS
- Multiple Broadband pools on one BRAS should be aggregated if possible
 - Reduce load on iBGP
- Aggregating leased line customer address blocks per router or per PoP is undesirable:
 - Interferes with ISP's traffic engineering needs
 - Interferes with ISP's service quality and service guarantees

Addressing Plans – Traffic Engineering

Smaller providers will be single homed

The customer portion of the ISP's IPv6 address block will usually be assigned sequentially

Larger providers will be multihomed

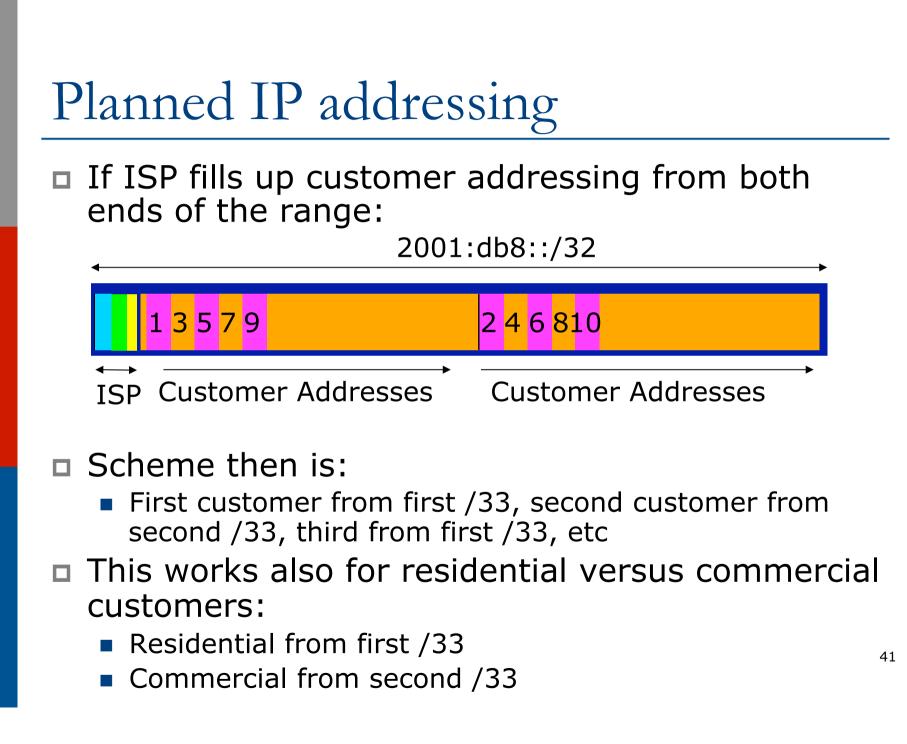
- Two, three or more external links from different providers
- Traffic engineering becomes important
- Sequential assignments of customer addresses will negatively impact load balancing

Addressing Plans – Traffic Engineering

- ISP Router loopbacks and backbone point-topoint links make up a small part of total address space
 - And they don't attract traffic, unlike customer address space
- Links from ISP Aggregation edge to customer router needs one /64
 - Small requirements compared with total address space
 - Some ISPs use IPv6 unnumbered
- Planning customer assignments is a very important part of multihoming
 - Traffic engineering involves subdividing aggregate into pieces until load balancing works

ISP fills up customer IP addressing from one end of the range:

2001:db8::/32


1234

ISP

Customer Addresses

Customers generate traffic

- Dividing the range into two pieces will result in one /33 with all the customers and the ISP infrastructure the addresses, and one /33 with nothing
- No loadbalancing as all traffic will come in the first /33
- Means further subdivision of the first /33 = harder work

Planned IP Addressing

- This works fine for multihoming between two upstream links (same or different providers)
- Can also subdivide address space to suit more than two upstreams
 - Follow a similar scheme for populating each portion of the address space
- Consider regional (geographical) distribution of customer delegated address space
- Don't forget to always announce an aggregate out of each link

Addressing Plans – Advice

Customer address assignments should not be reserved or assigned on a per PoP basis

- Follow same principle as for IPv4
- Subnet aggregate to cater for multihoming needs
- Consider regional delegation
- ISP iBGP carries customer nets
- Aggregation within the iBGP not required and usually not desirable
- Aggregation in eBGP is very necessary
- Backbone infrastructure assignments:
 - Number out of a single /48
 - Operational simplicity and security
 - Aggregate to minimise size of the IGP

Addressing Plans – Scheme

Looking at Infrastructure:

2001:db8::/32

•				F
/64	2001:db8:0::/48		/60	2001:db8:1::/48 to 2001:db8:ffff::/48
Loopbacks	Backbone PtP & LANs		NOC	Customers
Alternative:				
2001:db8::/32				
/64 20	01:db8:0::/48	/60 2001	:db8:1::/48	2001:db8:2::/48 to 2001:db8:ffff::/48
Loopbacks	Backbone PtP & LANs	NOC Cu	stomer PtP	Customers

Addressing Plans Planning

- Registries will usually allocate the next block to be contiguous with the first allocation
 - (RIRs use a sparse allocation strategy industry goal is aggregation)
 - Minimum allocation is /32
 - Very likely that subsequent allocation will make this up to a /31 or larger (/28)
 - So plan accordingly

Addressing Plans (contd)

Document infrastructure allocation

- Eases operation, debugging and management
- Document customer allocation
 - Customers get /48 each
 - Prefix contained in iBGP
 - Eases operation, debugging and management
 - Submit network object to RIR Database

Addressing Tools

Examples of IP address planning tools:

- NetDot netdot.uoregon.edu (recommended!!)
- HaCi sourceforge.net/projects/haci
- IPAT nethead.de/index.php/ipat
- freeipdb home.globalcrossing.net/~freeipdb/
- Examples of IPv6 subnet calculators:
 - ipv6gen code.google.com/p/ipv6gen/
 - sipcalc www.routemeister.net/projects/sipcalc/

Deploying IPv6

Now we put it onto the network

Deploying addressing and IGP

Strategy needed:

- Start at core and work out?
- Start at edges and work in?
- Does it matter?
- Only strategy needed:
 - Don't miss out any PoPs
 - Connectivity is by IPv4, so sequence shouldn't matter
 - Starting at core means addressing of point to point links is done from core to edge (many ISPs use strategy of low number towards core, high number towards edge)
 - But it really doesn't matter where you start...

IPv6 Deployment

- Number all the infrastructure interfaces according to the established addressing plan
 - No customers yet
- Care needed on LANs
- Secure routers and L3 devices for IPv6 access
 - Once a device is enabled for IPv6, it must have all the same security policies applied as for IPv4

Deploying on PoP LANs

LANs need special treatment

Even those that are only point to point links

Issues:

- ISPs don't want to have Router Advertisements active on network infrastructure LANs
- Activating IPv6 on a LAN which isn't adequately protected may have security consequences
 - Servers may auto configure IPv6
 - No firewall filtering means no security ⇒ compromise

IPv6 Interior Routing Protocols

Make a decision about which IGP to use

- (continue with OSPF vs deploy ISIS?)
- Enable chosen IPv6 IGP
 - Care needed not to break IPv4 connectivity
 - Adjacencies in IPv6 should match existing adjacencies in IPv4
 - IGP v6 routing table should match v4 routing table
- Check that the IPv6 network's operation compares with IPv4 operation
 - Fix any problems
 - In a dual stack network the protocols must function the same way

IPv6 Routing Protocol Deployment

Enable IPv6 BGP

- iBGP should replicate IPv4 iBGP
 - Same number of active neighbours
 - IPv6 version of the IPv4 configuration
 - Modify existing templates
- eBGP comes next
- Check that the IPv6 network's operation compares with IPv4 operation
 - Fix any problems
 - In a dual stack network the protocols must function the same way

Seeking IPv6 Transit

Hello World, I'd like to talk to you...

Seeking Transit

- ISPs offering native IPv6 transit are still in the minority
- Next step is to decide:
 - whether to give transit business to those who will accept a dual stack connection

or

- Whether to stay with existing IPv4 provider and seek a tunnelled IPv6 transit from an IPv6 provider
- Either option has risks and challenges

Dual Stack Transit Provider

Fall into two categories:

- A. Those who sell you a pipe over which you send packets
- B. Those who sell you an IPv4 connection and charge extra to carry IPv6
- Operators in category A are much preferred to those in category B
- Charging extra for native IPv6 is absurd, given that this can be easily bypassed by tunnelling IPv6
 - IPv6 is simply protocol 41 in the range of IP protocol numbers

Dual Stack Transit Provider

Advantages:

- Can align BGP policies for IPv4 and IPv6 perhaps making them more manageable
- Saves money they charge you for bits on the wire, not their colour

Disadvantages:

Not aware of any

Separate IPv4 and IPv6 transit

- Retain transit from resolute IPv4-only provider
 - You pay for your pipe at whatever \$ per Mbps
- Buy transit from an IPv6 provider
 - You pay for your pipe at whatever \$ per Mbps
- Luck may uncover an IPv6 provider who provides transit for free
 - Getting more and more rare as more ISPs adopt IPv6

Separate IPv4 and IPv6 transit

Advantages:

- Not aware of any
- But perhaps situation is unavoidable as long as main IPv4 transit provider can't provide IPv6
- And could be a tool to leverage IPv4 transit provider to deploy IPv6 – or lose business

Disadvantages:

- Do the \$\$ numbers add up for this option?
- Separate policies for IPv4 and IPv6 more to manage

Managing and Monitoring the Network

Watching the Infrastructure...

Managing and Monitoring the Network

Existing IPv4 monitoring systems should not be discarded

- IPv4 is not going away yet
- How to Monitor IPv6?
 - Netflow
 - MRTG
 - Commercial systems?
 - Others?

Netflow for IPv6

- Public domain flow analysis tool NFSEN (and NFDUMP) support Netflow v5, v7 and v9 flow records
 - IPv6 uses v9 Netflow
 - NFSEN tools can be used to display and monitor IPv6 traffic
 - More information:
 - http://nfdump.sourceforge.net/
 - http://nfsen.sourceforge.net/
- ISPs using existing IPv4 netflow monitoring using NFSEN can easily extend this to include IPv6

MRTG

- MRTG is widely used to monitor interface status and loads on SP infrastructure routers and switches
- Dual stack interface will result in MRTG reporting the combined IPv4 and IPv6 traffic statistics
- MRTG can use IPv6 transport (disabled by default) to access network devices

Other Management Features

A dual stack network means:

- Management of the network infrastructure can be done using either IPv4 or IPv6 or both
- ISPs recognise the latter is of significant value
- If IPv4 network breaks (e.g. routing, filters, device access), network devices may well be accessible over IPv6
 - Partial "out of band" network
- IPv6 is preferred over IPv4 (by design) if AAAA and A records exist for the device
 - So remote logins to network infrastructure will use IPv6 first if AAAA record provided

Customer Connections

Network is done, now let's connect paying customers...

Customer Connections

- Giving connectivity to customers is the biggest challenge facing all ISPs
- Needs special care and attention, even updating of infrastructure and equipment
 - Mobile
 - Cable/ADSL
 - Dial
 - Leased lines
 - Wireless Broadband

IPv6 to Mobile Customers

- Access technologies include 3G/LTE, Wifi (802.11) and WiMax
- End-sites could range from handsets to major corporations
- Strategy depends on infrastructure and device capability:
 - Dual-stack
 - IPv4-only with NAT46
 - IPv6-only with NAT64

IPv6 to Mobile Customers

Dual-stack:

- Most probably IPv4-NAT and native IPv6
- Handset / device / infrastructure support?
- □ IPv4-only with NAT46:
 - Availability of IPv4 to IPv6 protocol translators?
 - Are there IPv6-only sites as yet?
- □ IPv6-only with NAT64:
 - Deployment of CGN
 - Handset / device / infrastructure support?

IPv6 to Broadband Customers

Method 1: Use existing technology and CPE

- This is the simplest option it looks and feels like existing IPv4 service
- PPPoE v6 + DHCPv6 PD
- Used by ISPs such as Internode (AU) and XS4ALL (NL)
- Issues:
 - IPv6 CPE are generally more expensive (not the "throwaway" consumer devices yet)
 - Cheaper CPE have no IPv6 yet need to be replaced/ upgraded

IPv6 to Broadband Customers

□ Method 2: use 6rd

- This is for when Broadband infrastructure cannot be upgraded to support IPv6
- Used by ISPs such as FREE (FR)
- Example:
 - **2001**:db8:6000::/48 assigned to 6rd
 - Customer gets 192.168.4.5/32 by DHCP for IPv4 link
 - IPv6 addr is 2001:db8:6000:0405::/64 for their LAN (taking last 16 bits of IPv4 address)
 - DHCPv6 PD can be used here too (eg to give /56s to customers)

Issues:

All CPE needs to be replaced/upgraded to support 6rd

IPv6 to Dialup Customers

Use existing technology:

- Most dialup access routers are easily upgradable to support IPv6
- Service looks and feels like the IPv4 service
- PPPv6 with DHCPv6 PD (perhaps)
- CPE is usually PC or laptop (and most OSes have supported IPv6 for many years)
- Service already offered for several years by many ISPs

IPv6 to Fixed Link Customers

Use existing technology:

- Most access routers (PE) and Customer routers (CPE) are easily upgradeable or replaceable to include IPv6 support
- Service looks and feels like existing IPv4 service
- Configuration options:
 - IPv6 unnumbered on point to point links (or address them)
 - Static routes, subnet size according to business size
 - Or use BGP with private or public (multihomed) ASN
 - Whatever is done for IPv4 should be repeated for IPv6
- Fixed link Customers are probably the easiest to roll IPv6 out to
 - Customer deploying IPv6 within their own networks is a separate discussion (rerun of this presentation!)

IPv6 to Customers

- What about addressing? Here is a typical strategy:
 - Mobile Handset:
 - □ /64 = 1 subnet
 - Home/Small Organisation:
 - /60 = 16 subnets
 - **Reserve the whole /56**
 - Reserve a /48 for small orgs = 256 small orgs per /48
 - Medium Organisation:
 - /56 = 256 subnets
 - **Reserve the whole /48**
 - Large Organisation:
 - □ /48 = 65536 subnets

Customer Connections

What about customer end systems?

- Is IPv6 available on all their computers and other network connected devices?
- How to migrate those which aren't?
- What needs to be available on IPv6?
- How to educate customer operations staff
- What about their CPE?
- What about the link between your edge device and their CPE?
- What about security?

Conclusion

We are done...!

Conclusion

- When deploying IPv6 for the first time, a strategy and planning are of paramount importance
- Presentation has highlighted the steps in the planning and presentation process
 - Variations on the theme are quite likely there is no single correct way of proceeding