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1 Introduction 
This document provides opinion on IPv6 firewall design and security properties believed 
to be most beneficial in protecting IPv6 and IPv4/6 transition networks. The opinion 
intended as input into a larger process of determining what IPv6 Firewall Design 
Requirements should be. Firewall vendor expertise is needed to determine what is truly 
achievable and practical in modern design. Firewall Design Considerations for IPv6 
should not be interpreted as a DoD requirements document, though it may be referenced 
by such documents in the future. Design recommendations and approaches are 
occasionally offered, though these are purely informational and should not be interpreted 
as requirements for the DoD.  

2 IPv4 and IPv6 Packet Header Comparison 
Far too many comparison charts and "So What's New in IPv6?" summaries are already 
written on the IPv6 headers to justify another. Therefore, chapter 2 is brief and focused 
on specific changes in IPv6 that impact firewalls. 

2.1 Improving Packet Processing Performance 
The IPv6 header structure is improved in a number of ways. The hop-by-hop processing 
required by routers is minimized and endpoint processing of the packets is optimized. 
Although header bandwidth is a marginal performance factor, the amount of processing 
required on the header fields produces the biggest impact on performance. By minimizing 
header processing, the performance of IPv6 has the potential to surpass that of IPv4.   
 
Product maturity is a very significant factor in the overall performance level. High 
performance IPv4 router designs implement a substantial amount of processing in 
hardware, whereas newer IPv6 devices are often largely implemented in software. This is 
logical from an economic standpoint, since companies don't want to commit designs to 
very expensive chip masks before the revelations of early testing and experience can be 
incorporated. Software is slower than hardware but easier to test and modify.  
 
IPv6 removes some unnecessary fields. The IPv4 header checksum field is one such field 
that is not present in the IPv6 header. A checksum value at the IP layer must be 
recomputed at each hop and serves virtually no useful purpose. The link-layer is 
responsible for the delivery of bits across a wire, and therefore the link layer checksums 
are the ones that really matter. Transmission errors, for example, are detected by the link-
layer checksums and can be corrected by re-transmission. The only additional errors that 
can be detected by an IP layer checksum are those that occur between the link and IP 
layers within a given node. This almost never happens and indicates a firmware/hardware 
failure when it does (i.e. not a recoverable transmission error). Furthermore, a portion of 
these very rare hardware failures will happen to be within the checksum creation or 
checking logic itself. The IP layer checksum, therefore, is more likely to harm 
performance than improve it. 
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The identification field, flags field, and fragment offset field are removed from the base 
IPv6 header and given to the Fragmentation extension header. The IPv4 header options 
are similarly removed and redefined as extension headers.  The IPv4 internet header 
length field is removed because the IPv6 main header length is always fixed at 40 bytes.  
The IPv4 protocol field is renamed as the next header field in IPv6, which may contain 
the upper layer protocol identifier or may indicate the presence of extension headers. 
 
Clearly, the primary goal of IPv6 header optimization was to improve intermediate router 
processing performance. The IPv6 main header is fixed at 40 bytes so intermediate 
routers only need to process the addresses and the hop limit, but do not have to check the 
header length, scan through options (if they exist), or check or re-make checksums. In 
IPv6, the value of 0x00 in the next header field of the main header indicates that hop-by-
hop options exist that a router must process. If this next header value is non-zero, the 
routers can ignore everything beyond the main 40-byte header. 
 
These optimizations will go a long way to improving IPv6 performance since the 
majority of packet "touches" are optimized. Firewalls, however, need to adapt to this new 
header format, which is the subject of the remainder of this document. 

2.2 Impacts of IPv6 on the Firewall 
The performance optimizations described above in section 2.1 do not extend to 
intermediary firewalls. In contrast to the goal of minimizing header processing in routers, 
firewalls always need to view the complete header and upper layer information in order 
to apply a robust security policy. Since firewalls need to consider all of the header 
information, these new distinctions between the IPv6 main header and the extension 
headers do not simplify the firewall's task but make it more difficult.  
 
A firewall does not process all fields within a packet in the same manner. Some fields or 
header options (multiple fields) can be evaluated autonomously and instantly acted upon. 
This type of packet cleansing function can be applied to all packets across the board for 
conditions that are always bad or always good. Other fields must be evaluated as part of a 
set of conditions put up against the firewall's configured and prioritized filtering policy. 
These packets are sometimes allowed, and so the firewall cannot instantly determine 
pass/fail. It must sequentially apply an ordered set of policy conditions entry by entry. 
This is more of an access control function configured by a network's administrators.  
 
An example of the former case is when a firewall is configured to drop IP options in IPv4 
packets. Any packet with an IP option in the header is dropped outright without further 
processing. The latter case can be represented by configuring the firewall to allow Telnet 
packets for a particular user and to drop them for everyone else. To enforce this the 
firewall must collect a set of packet characteristics (IP addresses, protocol type, port 
numbers) and apply the set of configured policy rules to this information. Clearly some 
filtering is harder to implement than others, especially when the design is in hardware. 
The impact of the IPv6 header structure on firewalls must be evaluated in terms of how it 
affects the ability to implement the required filtering in hardware. In particular, the access 
control type of filtering presents a challenge in IPv6 over what was required in IPv4. The 
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essential fields of address, protocol, and port are fairly easy to locate in an IPv4 packet. 
The protocol value is always in the main header. The TCP/UDP headers can be found 
directly after the main header, which has a separate header length field in the event that 
options are present. In IPv6, however, the protocol may be contained in the main header 
or it may occur after a set of hop-by-hop options, or after several optional extension 
headers. The fact that it can be in any one of a number of places adds complexity to 
firewalls.   
 
Optional extension headers (including some with a variable number of sub-options) can 
occur in different orderings or an unspecified number of times, all of which dramatically 
increases the complexity for the firewall. The firewall must step through the set of 
extensions to determine if any of the options are dangerous and also to extract the critical 
data fields needed for filtering that occur along the way. It must also be careful not to run 
out of resources as it traverses through the chain of headers. This is non-trivial since "any 
number" of extension headers and options can occur according to standards. 
 
The IPv6 base specification[1] contains many occurrences of "should" and "may", as well 
as other exceptional language such as: "Each extension header should occur at most once 
except for ..."1 and "IPv6 nodes must accept and attempt to process extension headers in 
any order and occurring any number of times in the same packet, except for the Hop-by-
Hop Options ..."2. This latter quote is highly problematic since it seems to say that an 
implementation will be considered compliant even if it fails miserably, as long as it tries 
its best to process the packet headers. It's hard to find other instances of a good faith 
effort being specified as a network protocol requirement.   
 
Although flexibility in the main IPv6 specification is convenient for future enhancements, 
it is also detrimental to network security because it allows adversaries more avenues of 
attack. The above requirement of "must accept and attempt to process" essentially 
guarantees hackers that no matter how strange and unreasonable their attack packets are, 
they can rest assured that implementations will try to execute them as best they can. 

2.3 Striking Back with Firewall Design Consensus 
Firewall designs need to clamp down on some of the unconstrained flexibility allowed by 
IPv6 specifications. A more rigorous set of constraints is needed to define what is 
reasonable in IPv6 headers so that firewall hardware architectures can be optimized in 
achieving their filtering task. Packets beyond these constraints of reasonability are 
potentially dangerous (i.e. most likely attack packets) and must be dropped without 
consuming an exorbitant amount of the firewall’s resources.   
 
It is important to establish that a firewall has the right and obligation to operate outside of 
the standards that govern normal IP traffic. Any suggestion that firewalls "must accept 
and attempt to process extension headers in any order and occurring any number of times 
in the same packet", per the IPv6 specification, must be rejected. Whenever a firewall 
applies security filtering to any packet it is operating beyond the authority of 
specification. If a firewall drops a Telnet packet destined for an inside host, it has 
technically violated the IP standards which describe how that packet is delivered to the 
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destination address contained in the packet. Dropping the packet at the firewall is beyond 
the scope of the standards and this same rationale applies to the new IPv6 protocol as 
well. 
 
So the question is not "Is a firewall allowed to reign in standards?" but rather "What is 
reasonable for the firewall do?" and "How much flexibility should a firewall tolerate?" In 
another example, suppose an IPv6 packet is created with five consecutive Destination 
Options extension headers, some containing real options and some with only padding. 
This is an unreasonable yet technically legal packet. If the firewall allows this packet it 
must process all five headers and have system resources available to deal with the results. 
If that is acceptable, then how about ten consecutive headers, or fifteen? If the design will 
not drop unreasonable packets the attacker need only determine the firewall's resource 
limitations. Once the firewall design does decide to draw a line and drop everything over 
the line, the task is simply to determine where the line should be drawn. The details in 
Chapter 3 aim to determine where to draw the line by arguing what is reasonable. 
 
IPv6 header filtering will be most effective if a general consensus among firewall 
vendors is reached as to what is allowed and what should be dropped as unreasonable. In 
this way, a consistent front is established by which host and router designs can abide. 

3 Firewall Filtering of IPv6 Headers 
This chapter covers the IPv6 header and packet structure. Each field in the IPv6 main 
header is analyzed in section 3.1 and all currently defined extension headers are analyzed 
in sections 3.2 through 3.8 to determine their security implications and to propose a 
filtering method. Different varieties of the same extension header are analyzed separately 
(e.g. various Destination Options or Routing Header types). 
 
Constraints on header ordering, header combinations, and duplication of headers are 
mentioned along the way, but readers should refer to Section 3.9 for a detailed and 
focused treatment of this important issue for IPv6 firewall design. 
 
The proposed filtering method varies for different fields or headers as explained in 
section 2.2, from simple packet cleansing to a more complicated access control function.  
This document does not provide firewall configuration guidance, but rather identifies the 
kind of filtering that is expected to be most useful for the field, header, or option being 
analyzed. Terminology for three basic methods is defined here and used throughout the 
rest of the document.  
 

• On-Presence - this method is only applied to optional extension headers and 
options and refers to filtering determined by their mere presence in a packet. It 
applies to all packets crossing a given interface and should be configurable (per 
interface) unless specified otherwise. 

• On-Validity - this method applies to filtering actions relating to invalid or 
unwanted conditions in a main header or extension header. It to applies to all 
packets crossing a given interface unless stated otherwise. These filtering actions 



 

 
5 

 

generally do not need to be configurable since they correspond to conditions that 
are always bad. 

• As-Condition - this method refers to access control filtering whereby a condition 
is available to the system administrator for use in defining its ordered list of 
filtering rules. Traditional IPv4 examples are: IP Address, protocol field, port 
numbers etc ...  This method is used to identify the IPv6-specific conditions 
needed for firewall configuration.  

3.1  IPv6 Main Header Fields 

3.1.1 Version 
Link layers identify IPv6 as a separate type from IPv4. For example, Ethernet type 
0x0800 is now interpreted as IPv4 (formerly "IP") and IPv6 is assigned the type 0x86DD. 
Therefore, firewalls should check that the version field is correctly matched with its 
received link type field and drop any malformed frames. Failure to do this could result in 
a packet of version x being evaluated by the firewall under the filtering rules of version y, 
with unpredictable results. 
 
Version identification is particularly important in processing tunnel packets. If an outer 
tunnel layer contains an upper layer protocol value of 0x04 the firewall should verify that 
the version field of the inner layer indicates IPv4 and if the upper layer protocol value is 
0x29, the version field of the inner layer must indicate IPv6. 
 
The version field should be filtered on-validity of these conditions. 

3.1.2 Traffic Class 
Firewalls should have a minimal capability of zeroing out the traffic class field or 
dropping packets with a non-zero traffic class field. This function is needed most for 
outbound traffic to eliminate unwanted data channels. The on-validity style of filtering is 
appropriate though this function should be configurable to enable/disable. 
 
Firewalls may or may not choose to incorporate a more advanced role in Quality of 
Service (QoS) functionality, though the subject is beyond the scope of this report.  

3.1.3 Flow Label 
 Firewalls should implement a similar function for the flow label field as described above 
for the traffic class field.  Again, the goal is to block unwanted data channels.  

3.1.4  Payload Length 
The payload length field in IPv6 indicates the number of bytes remaining in the packet 
(or packet fragment) beyond the standard 40-byte IPv6 main header. The one exception 
to this rule requires the payload length to be set to 0x00 whenever the Jumbo Payload 
hop-by-hop option[2] is used.  
 
As a minimum, the zero value in payload length must not cause a firewall to crash or  
bypass filtering of the packet. The zero value should also be used as a validity check for 
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the Jumbo Payload option to remove the invalid cases of two conflicting length 
indicators from potentially confusing internal nodes. The on-validity method of filtering 
applies in this case.  
 
Other filtering on the payload length may be implemented by a firewall design or 
inherited from existing IPv4 designs, though none are recommended here because they 
do not detect very many potential attacks. For example, the firewall could check that the 
length of the IP payload plus 40 bytes is consistent with the size of the link layer frame 
that delivered the packet; however, this would only have relevance to the link directly 
connected to the firewall since that information is regenerated at every hop and/or 
detected by a router along the way. 
 
As explained later in sections 3.9 and 3.6.1.1 of this document, firewalls must be able to 
extract the full set of header data from a packet, including upper layer protocol and port 
values. Once this data is obtained, the packet can be filtered properly. A truncated packet 
must be dropped if this required data is missing. If a packet is truncated such that the tail 
end of the application-layer data is missing, the firewall has no context or means of 
detecting this condition. Such a packet is still filtered properly, however and the 
application must deal with the garbled data. 

3.1.5 Next Header 
The next header field is a crucial field for the IPv6 firewall. It corresponds to the IPv4's 
protocol field which most often indicates one of three common upper layer protocols: 
TCP (0x06), UDP (0x11), or ICMP (0x01 in IPv4, 0x3A in IPv6). Of course there are 
many other values defined by the IANA3 that are less common. 
 
In IPv6, however, the next header field differs from the IPv4 protocol field in the fact 
that it doesn't always point to the upper layer protocol. It may point to an optional IPv6 
extension header and that header may point to another optional header. Eventually, the 
last optional extension header points to the upper layer protocol. There is no specified 
limit on the number of extension headers that could occur although there is a limit of 
what is reasonable. 
 
The next header field processing creates a significant increase in complexity for 
firewalls, because they could previously extract the IPv4 protocol value in a fixed 
location, but with IPv6 that same information must be tracked down by progressing 
through a variable number of headers. Furthermore, instead of one value there are now n 
values to extract because the policy decision may be contingent on the presence of certain 
extension headers. The extraction of the (very important) upper layer protocol value and 
the processing of optional headers are intertwined in IPv6, so firewall designers do not 
have the option of simply ignoring extension headers. For an IPv6 firewall to reliably 
enforce filtering upon protocol/port values of a packet, it must be able to either find the 
upper layer protocol value or recognize when it is unable to locate the value due to lack 
of resources or some other failing.  
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This document discusses the handling of each extension header separately in the sections 
to follow. Though technically it is a part of each header's processing, the extraction of the 
protocol value from the next header field will not be discussed repeatedly in each section. 
Refer to Section 3.9 for a detailed analysis of header ordering and a recommended 
algorithm. 
 
Another important point regarding the next header field in IPv6 headers is that the same 
number space (255 possible values) is shared between extension headers and upper layer 
protocols with no scheme other than doctrinal assignment. If an unknown value is 
encountered, there's no way to know if it's an extension header or an upper layer protocol. 
A firewall should treat this as both protocol unknown and header extensions unknown, 
and must have the capability to drop such packets.  The on-validity filtering method 
applies here. Although firewalls may be designed with a configurable option to allow 
unknown values of protocol/extension header to pass, the DoD will require the ability to 
drop them.  

3.1.6 Hop Limit   
The hop limit field in IPv6 is used as a security check in the processing of Neighbor 
Discovery and Address Auto-configuration packets. Therefore the hop limit value of 255 
is a useful filtering condition.   
 
Filtering the hop limit field is particularly valuable in processing tunneled IPv6 packets. 
The specifications [3] [4] [5] require that the hop limit be decremented prior to IP tunnel 
encapsulation; therefore, any tunnel packet with an inner layer hop limit of 255 must be 
considered invalid and dropped. If the firewall is able to drop any tunneled packets where 
the inside IP header has a 255 hop limit, it will remove a whole class of possible 
Neighbor Discovery attack packets which require a value of 255 in order to be valid at 
the final destination.  Note that this should apply to all inner IP layers if there are more 
than one. The hop limit field is filtered on-validity. 

3.1.7 Source and Destination Address 
The IP address fields are critical elements in the IPv6 main header and should be filtered 
(as-condition) by IPv6 firewalls just as they are in IPv4. Individual firewall policy entries 
will typically use source and destination IP address as primary filtering conditions. 
 
Filtering source addresses of incoming packets has a double security benefit. See Figure 
3-1 below. A potential attacker has two obstacles to overcome. First, since his address is 
blocked (1), he must guess a valid source address (2). Secondly, he must subvert the basic 
routing structure in order to get a response packet returned, otherwise, the response goes 
to the real user (3) where it is ignored as a stray and possibly logged as a security event. 
A legitimate user can send a packet (4) and receive the response (5) with no obstacles to 
overcome. 
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Figure 3-1: Double Benefit of Filtering Source Addresses 

3.2 Option Types 
IPv6 Options are individually defined in separate RFC documents and new options may 
continue to be added as needed. They are components (in Type-Length-Value format) 
that can appear in either of the two IPv6 extension headers designed to handle options: 
The Hop-by-Hop Options extension header or the Destination Options extension 
header. 
 
The IPv6 standards provide one octet (256 values) to identify all option types without 
designating them as hop-by-hop or destination options. It is up to the RFC specifying the 
individual options as to whether they are valid in one or both of the extension headers. 
Firewalls need to know which options are allowed in which header if they are to enforce 
validity checking on the option type. 
 
The standards also use the first two bits of the 8-bit type field to divide the space into four 
parts, each corresponding to a different action that a node should take if the option is 
unknown4. A firewall should NOT adhere to this practice. Instead firewalls should have a 
definite and configurable action for every option.  
 
The set of currently undefined values for option type should be filtered as a group (on-
presence) with a configurable option to ignore or drop them all. This group will be 
referred to as the Unknown Options in this document and currently consists of all values 
not specifically addressed in subsections of 3.2, 3.3, or 3.4 below. 
 
To account for new options a firewall may anticipate the next few option values that 
would be assigned and separately decode them or have a programmable means to extract 
values out of the group of Unknown Options.  This would allow new options to be 
distinguished from the Unknown Options and separately filtered on-presence. Advanced 
filtering (i.e. on-validity) can not be anticipated on a hereto-undefined option, but the 
individual ignore/drop capability may be useful. 
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IPv6 options are defined below if they are permissible in both the Hop-by-Hop Options 
and the Destination Options extension headers.  If they are limited by specification to 
one extension header or the other, they are described in sections 3.3 or 3.4 as appropriate. 

3.2.1 Pad 1 and Pad N Options 
The Pad1 and PadN options (option type: 0x00 and 0x01, respectively) are valid in both 
the Hop by Hop Options and the Destination Options headers. These options may 
appear more than once in either or both of these extension headers. 
 
The pad “options” are only used to align other options to convenient byte boundaries but 
don’t have any functionality themselves.  The pad options should be accommodated as 
part of the firewall’s packet processing but do not require security policy configurations.  
 
A firewall should derive a filtering scheme for the pad options (on-validity) to abort 
processing and drop the packet if highly unreasonable padding is encountered. Although 
these packets may be benign, it is also possible that an attacker could use bizarre padding 
to confuse a firewall or expend a firewall’s resources. By clamping down on 
unreasonable padding, this avenue of attack is removed. 
 
The exact nature of the filtering scheme is left to firewall vendors, though some examples 
of unreasonable padding are as follows:   

• More than one padding option back-to-back should never occur.  
• PadN options with data length greater than 5 should never be needed (i.e. overall 

option length of 7). This assumes the RFC 2460 Appendix B guidelines of a 
maximum of an 8-byte boundary being defined.   

• Any PadN option with data bytes that are not zeros should be dropped. This is 
suspicious behavior that may indicate a data channel. 

3.2.2 Endpoint Identification Option 
The Endpoint Identification option (option type: 0x8A) is listed by the IANA as being 
related to the Nimrod routing system, circa 1996. There is no known RFC document that 
defines the option and only RFC 1992 (informational) to explain Nimrod routing.    
 
It is not known if this option is/was intended as a Destination Option or a Hop-by-Hop 
option, or if there is any expectation of its implementation at all.  
 
The on-presence filtering method is appropriate. Firewalls should detect this option and 
be configurable to ignore it or drop the packet. 

3.3  Hop by Hop Options Extension Header 
The Hop-by-Hop Options extension header, if present, must be the first header to follow 
the IPv6 main header. This is indicated by a value of 0x00 in the next header field in the 
main header. If a next header value of zero is contained at any place further down in the 
chain (i.e. in any extension header) the packet is invalid and should be dropped. 
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3.3.1 Jumbo Payload Option  
The Jumbo Payload option has the option type value 0xC2 and is only valid as a Hop-
by-Hop option[2]. This option allows the creation of very large IP packets and will likely 
only be appropriate on certain specialized networks. Network and link layer components 
that are not anticipating such packet lengths may experience performance degradation or 
failure. Furthermore, users with jumbo payloads may be able to achieve an unfair usage 
of bandwidth over other users. For these reasons, security policymakers should have the 
option of detecting and blocking this IPv6 option. 
 
Firewalls should apply on-presence style filtering to this option and be configurable to 
allow it or drop the packet. If allowed, the firewall should apply additional on-validity 
style filtering on this packet. The following restrictions are specified and may be used as 
firewall validly checks: 

• The IP payload length must be 0x00 when the Jumbo Payload option is present 
• The Jumbo Payload option can only be used when the length is greater than 

65,535 (i.e. the two most significant bytes of the jumbo length can not be 0x00) 
• The Jumbo Payload option cannot be used in conjunction with a Fragmentation 

extension header5 
 
Note that any length checks performed on IP packets (Section 3.1.4) may be severely 
complicated by this option.  

3.3.2 Router Alert Option 
The Router Alert option has the value 0x05 for option type and is only valid as a hop-by-
hop option[6]. 
 
The purpose of this option is to signal to routers that a closer inspection of the packet is 
warranted. The only security concern is regarding denial of service (DOS) attacks that 
could result if an attacker sends large numbers of packets with this option. 
 
Firewalls should use on-presence style filtering on this option and be configurable to 
ignore it or drop the packet. The specification prohibits more than one Router Alert 
option to be present in a single packet even if the identifier within is different.  
 
The IPv4 equivalent of this option is defined by RFC 2113[7]. Designers should be 
careful not to confuse the two versions which are very similar except that the option 
identifier (first byte) of the IPv4 header option is 0x94. The value 0x94 is currently 
undefined for the IPv6 option type field. 

3.3.3 Invalid Options for the Hop-by-Hop Options Extension Header 
The following values are invalid in a Hop-by-Hop extension header option type field. 
Packets with these options in a hop-by-hop header should be dropped on-validity. 

• Value 0x04, Tunnel Encapsulation Limit 
• Value 0xC9, Home Address Destination option 
• Value 0xC3, NSAP Address option 
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3.4  Destination Options Header 
The Destination Options extension header may appear in several locations and may 
appear more than once within an IPv6 header chain. This is reflected in the recommended 
header ordering guidance provided in Section 3.9. 

3.4.1 Tunnel Encapsulation Limit Option 
The Tunnel Encapsulation Limit (option type: 0x04) is a destination option defined in 
RFC 2473[4]. The option is used to limit the number of IP-in-IP encapsulations that may 
be imposed on an original packet by informing tunnel entry points to reject packets that 
would otherwise be encapsulated and fragmented. The IPv6 Path MTU Discovery 
process already provides a means of signaling the optimal packet size back to an 
originating node, though there are still situations where an encapsulating node may have 
no other option than to fragment. The use of the Tunnel Encapsulation Limit option 
gives network administrators a better ability to detect and correct unwanted 
fragmentation scenarios when multiple tunnels are in use. 
 
From a security standpoint, the Tunnel Encapsulation Limit option is non-threatening. 
A filtering strategy must be able to deal with all encapsulated IP layers of an arriving 
packet regardless of whether this option is present. One or more firewalls can be used to 
filter the IP layers, or the packet must be dropped if the number of layers exceeds the 
capability of the filtering strategy. A configuration to drop protocol type 0x04 and type 
0x29 in the last analyzable layer achieves this requirement. Security issues with tunneled 
traffic are discussed in Section 5.2 of this document. 
 
Firewalls are recommended to detect and ignore this option.   
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3.4.2 Home Address Option 
The Home Address option is assigned the option type value 0xC9 and is part of Mobile 
IP processing defined in RFC 3775[8]. This option is only valid as a Destination Option.  
 
 The Mobile IP specification contains the following restrictions on placement:6 

• It is illegal to have more than one Home Address option in a single IP header 
chain 

• The Home Address option must appear after a Routing Header if one is present 
• The Home Address option must appear before a Fragmentation Header if one 

is present 
• The Home Address option must appear before the Authentication Header (AH) 

or Encapsulating Security Payload (ESP) headers if present 
 
For a complete analysis of the Mobile IP scenario and a recommended firewall filtering 
strategy, refer to A Filtering Strategy for Mobile IPv6[9].  Conclusions from that analysis 
are stated below.  
 
The analysis reveals three cases where filtering of the Home Address option is needed. 
First, the ability to drop all packets containing the option at a network boundary is 
needed. Separate configuration of this filtering for inbound and outbound traffic is 
required to support the various Mobile IP filtering scenarios (i.e. Home Network, Foreign 
Network, and Correspondent Network). 
 
Secondly, the Home Address option must be filtered in conjunction with an ESP header 
and particular destination addresses in order to restrict home agent functionality to only 
the legitimate home agents. This is one of the rare occasions where the firewall does need 
to filter an ESP header in a packet. Inbound traffic at Home, Foreign, and Correspondent 
networks, is filtered to either allow or prevent home agents as site policy dictates. 
 
Finally, it is highly desirable to have a firewall that can filter on the home address 
contained in the Home Address option. More specifically, to replace the IP source 
address with the home address from the Home Address option for the purposes of 
filtering the packet only (i.e. forwarded packets would be unchanged). Correspondent 
Network firewalls would use this source address swap to apply their normal filtering 
policies to all packets containing a Home Address option. This is an on-presence style 
function (rather than filtering action) since it applies to all occurrences of the Home 
Address option independently and prior to all other filtering actions. 
 
If the address swapping function above is implemented, a firewall should also allow 
filtering on the true source address of packets with a Home Address option, to allow the 
rejection of unwanted Mobile IP Foreign Networks. A firewall would need the ability to 
distinguish these non-swappable source address filters from the normal ones that get 
swapped.  
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The analysis in [9] provides some alternate approaches to filtering Correspondent 
Networks if the home address swapping capability described above is not available. 
These approaches, require the as-condition style of filtering for the Home Address 
Destination Option. Specifically, a firewall would need to be configured to: allow “any 
source address” with a Home Address Destination Option and allowed protocol/port 
values for each allowed internal destination.   
 
In summary, firewalls should implement an on-presence address swapping function to 
apply to all packets across an interface if enabled. Regardless of whether address 
swapping is implemented, the firewall needs the as-condition style filtering for the Home 
Address option. All designs will need the as-condition filtering to enforce proper use of 
home agents. Designs without the swapping function will have additional need of the as-
condition style filtering to protect Correspondent Networks. 

3.4.3 Network Service Access Point (NSAP) Address Option 
The NSAP Address option (option type: 0xC3) is assigned as a Destination Option by 
RFC 1888 and deprecated (reclassified as historic) by RFC 4048.  At the time of this 
writing the value is still assigned though this is likely to change at some future time.   
 
Firewalls should filter on-presence and be configurable to ignore the option or drop the 
packet.  

3.4.4 Invalid Options for the Destination Options Extension Header 
The following values are invalid in a Destination Options extension header option type 
field. Packets with these options in a Destination Options header should be dropped on-
validity. 

• Value 0xC2, Jumbo Payload 
• Value 0x05, Router Alert 

3.5 Routing Headers 
The Routing Header extension headers are analyzed separately according to the routing 
type field. 

3.5.1 Type 0 (Source Routing) 
The Type 0 Routing Header is the functional equivalent to the IPv4 loose source routing 
option. This option is rarely used in IPv4 and is typically blocked by firewalls because of 
its security risks. These same risks exist for the IPv6 Type 0 Routing Header. 
 
Back in Figure 3-1, filtering of source addresses was shown to have a double security 
benefit. If the same site accepted the Type 0 Routing Header, the double benefit is cut in 
half. An attacker would still need to know/guess a valid source address that is acceptable 
at the target site. However, with the Type 0 Routing Header, traffic would proceed 
along a deliberate path in both directions, allowing the attacker to insert himself in that 
path.  See Figure 3-2 below.  
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Figure 3-2: Type 0 Routing Header Threat 

The Type 0 Routing Header is dangerous because it allows the attacker an easy means 
of receiving return traffic when pretending to be another user. The dashed line in the 
figure above indicates the portion of the path that the packet only appears to take. It 
actually originates from the attacker at node B. 
 
Another threat from the Type 0 Routing Header is that it can hide the true packet 
destination from a firewall. If a firewall ignores the routing header and applies the 
filtering policy to the packet’s destination address, it can be fooled into allowing traffic 
that should be blocked. Traffic is sent through the firewall to an allowed node on the 
inside, and normal processing of the routing header sends the packet to a different target 
node. Normally the firewall would block traffic sent to the target node. 
 
Firewalls require on-presence filtering of the Type 0 Routing Header and should be 
configurable to ignore the header or drop the packet. Most networks will configure to 
drop this traffic as is done today with IPv4 source routing. 
 
A second capability is also desirable for IPv6.  It should be possible to allow the Type 0 
Routing Header only for packets containing an IPsec header (either AH or ESP).  With 
the security headers present, the attacker can no longer spoof the packet and so the above 
threats are removed.  If this capability is provided, administrators should have three 
options in all: 

• Drop all packets containing Type 0 Routing Header 
• Ignore the Type 0 Routing Header 
• Ignore the Type 0 Routing Header if a security header is also present, and drop 

all packets containing a Type 0 Routing Header without a security header7 
 
The Type 0 Routing Header can actually strengthen an IPsec system in the sense that it 
can route encrypted packets through safer paths in an internet thereby reducing the 
vulnerability of the packets. 
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3.5.2 Type 1 (Nimrod routing) 
Similar to the Endpoint Identification option (Section 3.2.2), the value 0x01 for the 
routing type field of a Routing Header is reserved by something called “Nimrod 
Routing” of which little is known and less is specified. 
 
Firewalls should filter this extension header on-presence and be configurable to ignore it 
or drop the packet. 

3.5.3 Type 2 (Mobile IP) 
The Type 2 Routing Header is used exclusively in support of Mobile IPv6. Though 
structured similarly to the Type 0 Routing Header, the Type 2 header allows only one 
address swapping action to occur. This swap can only occur at the destination node 
indicated by the original destination address.  
 
Type 2 Routing Headers are only processed by the final destination node and the packet 
cannot be forwarded again after the header is processed.8  Therefore, the Type 2 header 
does not present the security threats that occur with the Type 0 Routing Header and 
should generally be allowed for use9. 
 
The specification recommends that a Type 2 Routing Header “SHOULD” occur after a 
Type 0 Routing Header if both are present. Since the Type 2 header effectively operates 
as a destination option, it makes no sense to ever have a Type 0 follow a Type 2 header. 
Firewalls should enforce this “SHOULD” as a “MUST”. 
 
The reader should refer to [9] for a complete analysis of the Mobile IP scenario. From 
that analysis, filtering of the Type 2 Routing Header is only needed when it is necessary 
to prevent a site from acting as a Foreign Network and this can be achieved with the on-
presence style of filtering. 
 
Firewalls should detect this option and be configurable to ignore it or drop the packet.   

3.6 Fragmentation Header 
Packet fragmentation at the IP layer poses a difficult challenge for a firewall trying to 
enforce a security policy. This section presents the security issues and will make some 
design recommendations for handling IPv6 fragmentation at the firewall; with a goal of 
being secure, practical to implement, and tolerant of all reasonable traffic. 
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3.6.1 Fragmentation Security Issues 

3.6.1.1 Issue 1: Extracting Header Information 
The first issue with fragmented packets is in the challenge of extracting critical header 
information needed to apply full security filtering. If there are n fragments of a TCP/IP 
packet, the TCP header and port information will only be in one of the fragments. The 
other fragments have insufficient information for independent judgment and would 
normally be dropped if it weren't taken into consideration that they are fragments of a 
larger packet.  
 
If any of the fragments are dropped, the whole packet is discarded when the reassembly 
operation times out at the destination host. Therefore, if the firewall can apply full 
security filtering to any one fragment, it can consider remaining fragments to be 
harmless, not counting the loss of resources as the reassembly operations times out.   
 
If critical header information is straddled across two fragments, the firewall's extraction 
task is complicated because it must maintain state across multiple packets. The missing 
fragment may be significantly delayed, fragments need to be queued, and the location of 
fields within a fragment must be synchronized with the previous fragment. Once the 
firewall begins down this path, it would be easier to perform full packet reassembly prior 
to filtering. Ideally, all of the required data needed to filter the packet can be extracted 
from a single fragment.   
 
A firewall design must be able to determine if it has extracted the entire set of required 
data. For IPv6 this is significant because of the optional number of extension headers. It 
must be possible to drop a packet for which an incomplete set of data is extracted.   

3.6.1.2 Issue 2: Fragment Overlaps 
Filtering on a partially assembled packet can also be a security risk, which brings up the 
second issue with IP fragmentation: overlapping fragments. Fragment overlap attacks 
originated in IPv4 and unfortunately, the IPv6 specification does nothing to prevent them. 
The fragment offset field and fragment length are used to reconstruct the original packet 
and it should always be the case that the offset of fragment n plus the length of fragment 
n adds up to one byte short of the offset of fragment n+1. The offset value points to 
where the fragment is positioned in the overall reconstructed packet and there should 
never be any overlap in a normal fragmentation. The overlap attack creates packet 
anomalies whereby the fragments do overlap and it depends on individual 
implementations as to which data ends up being used in the final reassembled packet.   
 
The fragment overlap attack works by sending fragments to a firewall which appear to be 
one thing but when reassembled at the inside host, are actually something else. For 
example, if the first fragment indicates that the packet is a TCP port 80 (http) packet, it 
might pass through the firewall. A subsequent overlapping fragment overwrites the port 
80 portion with port 23 (Telnet) data, thereby sneaking past the firewall, which is 



 

 
17 

 

supposed to drop incoming Telnet packets. This attack works against firewalls that try to 
evaluate only the first fragment against a security policy.   

3.6.1.3 Issue 3: Partial Set of Fragments 
A third issue with packet fragments at a firewall is whether the security enforcement 
imposes any hardship on internal hosts by means of reassembly timeouts. Although 
evaluating/dropping a first fragment is secure, the remaining fragments get through 
creating an unwanted side effect. The partial set of fragments ties up resources on the 
destination host which waits for a missing fragment that never arrives. Fragmentation 
timeouts are specified to be 60 seconds, which is a long time to hold resources. 
 
It is important to note that an attacker can always send fewer than all fragments as a 
deliberate denial of service (DOS) attack. Security filtering cannot cure this problem 
outright but can only move it from one place to another. For example, if a firewall 
performs packet reassembly it can shield the inside hosts from this attack, but now the 
firewall itself is subject to the same attack. If the firewall is shut down by a DOS attack, 
all inside hosts are disabled.   

3.6.1.4 Issue 4: Nested Fragmentation 
Nested fragmentation is a fourth issue. In IPv6, fragmentation is only allowed by the 
originating node, not by intermediate routers. The standard is ambiguous and possibly 
contradictory, however, as to whether an occurrence of nested fragments is technically 
compliant or not. It must be assumed that nested fragments are not intended behavior 
because RFC 2460 states that only initiating hosts can fragment and that “the lengths of 
fragments must be chosen such that the resulting fragment packets fit within the MTU of 
the path to the packets' destination(s)”10.  Given these two requirements, we can conclude 
that there is never a justification for a second fragmentation header to appear in an IPv6 
header chain11. However, the specification does not explicitly forbid it and it does have a 
statement saying that implementations should try to deal with any number of extension 
headers that occur in any order12.  
 
Unique to IPv6, nested fragmentation consists of a set of fragments which, after 
reassembly, contains yet another fragmentation header indicating that a fragment had 
been fragmented. This is different than what happens in IPv4 when a fragment is further 
fragmented by an intermediate router (which is allowed in IPv4).  In that case, the 
existing fragmentation fields in the IPv4 header are modified as the fragments are broken 
into smaller pieces. Multiple fragmentation headers in an IPv4 packet is not possible 
because this information is part of the main header. 
 
The security threats of nested fragmentation are in its complexity and obfuscation of the 
true nature of the packet. A firewall may be fooled or a host may be "crashed" if it is not 
able to deal with this unexpected case. 
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3.6.1.5 Issue 5: Fragmentation and Tunneling 
Fragmentation and packet tunneling are interrelated because tunneling adds an outer IP 
header to an existing IP packet, creating a potential conflict with the MTU size. 
Fragmentation may be needed at a tunnel entry point if Path MTU Discovery can not 
adjust the packet size at the source.   
 
Generally speaking, these fragmentation issues are more operational problems than 
security issues. RFC 4459 [10] explains a variety of cases that may be encountered and 
how the problems might be solved. Tunneling has its own security issues as described in 
section 5.2 of this document.   
 
Fragments may be tunneled and tunneled data may be fragmented. A firewall design 
strategy for handling fragments should work in unison with its strategy for handling 
tunnels. It is also important that no design allow an attacker a means to escape filtering 
by using a particular combination of fragmentation and tunneling. 

3.6.2  Two Firewall Design Approaches to Fragmentation Handling 
A design decision must be made as to whether the firewall will reassemble fragments and 
filter the whole packet, or whether it will filter fragments and pass them through to the 
destination host on the secure side (inside). Both cases have advantages and 
disadvantages, so both will be viewed as acceptable design approaches by this document. 
 
A firewall that has "deep packet inspection"13 capabilities will likely choose to 
reassemble fragments since it needs to see deep into the application layer of packets. The 
more traditional firewalls may prefer to avoid the overhead of fragment reassembly to 
achieve higher performance (packet throughput). If a firewall is designed to filter 
tunneled traffic, the potential for fragmentation in multiple IP layers may be too labor 
intensive for a reassembly approach. 
 
The lists of pros and cons below show that this is a non-trivial decision for a design team 
to make. 
 
Advantages of fragment reassembly:  

• security filtering is always applied to the full packet  
• overlap attacks will fail because the firewall filters the fully reconstructed packet 
• inside hosts are shielded from partial fragment DOS effects and deliberate DOS 

attacks via fragments 
• deep packet filtering can be performed 
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Disadvantages of fragment reassembly: 
• performance hit of having to do the reassembly on the firewall for all inside nodes 

(this could be huge) 
• packets may need to be re-fragmented after filtering if they are too big for the 

inside MTU (even more of a performance hit) 
• the partial fragment DOS attacks can be made against the firewall itself, which if 

successful, could effect all inside hosts 
• tunneled traffic can be very complicated with fragments at inner layer, outer layer, 

or both 

3.6.3 Recommendations for Firewalls that Reassemble 

3.6.3.1 Issue 1 (data extraction) and Issue 2 (overlap attacks) for Firewalls that Reassemble 
If reassembly is performed by the firewall, it is important that full reassembly be 
performed, and that the firewall filters and passes the reassembled packets (not the 
fragments). Issue 1 is eliminated since the full packet is filtered. The threat from issue 2 
is also removed.  
 
The firewall must NOT reassemble fragments, filter the result, and then pass the original 
fragments because there is no guarantee that inside hosts will reassemble overlapped 
fragments in the same manner as the firewall (i.e. it is outside of specification). The 
firewall may have to re-fragment the packet, which is not a security threat because the 
firewall is trusted not to create overlaps. 

3.6.3.2 Issue 3 (partial set of fragments) for Firewalls that Reassemble 
A reassembling firewall doesn’t filter individual fragments and therefore does not create 
the unwanted side effect of a partial set of fragments. Although fragments may reach the 
inside hosts, they would be generated by the firewall due to a re-fragment operation after 
filtering. The inside hosts would therefore receive a full set of fragments very reliably. 
 
A partial set of fragments sent by an attacker as a deliberate DOS attack is still a concern. 
Although the attack can not reach inside hosts, it can affect the reassembling firewall. A 
good design strategy to limit the effects of this attack is to incorporate a threshold on 
reassembly timeout occurrences over a period of time. For example, if X reassembly 
timeouts occur in Y minutes some action is initiated such as: temporarily block a source 
address, temporarily reduce the reassembly timeout, temporarily drop fragments, and/or 
generate an alarm. DOS attacks are difficult if not impossible to completely prevent. 
Quick detection of an ongoing attack is the most important element. 

3.6.3.3 Issue 4 (nested fragmentation) for Firewalls that Reassemble 
A firewall that reassembles should process the first Fragmentation Header encountered 
in a packet. If the reassembled packet contains another Fragmentation Header (i.e. 
nested fragmentation) then the firewall should drop the packet. Discouraging this 
behavior is better for all nodes in the long run.   
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3.6.3.4 Issue 5 (fragmentation and tunneling) for Firewalls that Reassemble 
Firewalls must expect fragments to occur simultaneously in each IP layer of a tunneled 
packet. If a firewall is designed to filter multiple layers of IP tunneling, the worse case 
fragment reassembly is particularly painful. Both layers can be fragmented and the 
firewall can have multiple reassembly operations to perform before it is able to filter the 
packet.   
 
Furthermore, reassembly of a fragmented inner IP layer is more complicated than that of 
untunneled traffic and could produce unwanted results. For example, assume that a 
packet is divided into ten fragments at the originating node A, travels to a tunnel entry 
point B, and then to its final destination C. The result is that tunneled packets with the 
inner layer fragmented are sent from node B to node C. If these fragments are 
reassembled by a firewall prior to reaching C, it is not clear which of the ten outer IP 
headers is appropriate to assign to the reassembled packet and if any important data could 
potentially be lost in the other nine outer headers. The tunnel entry point is not expecting 
that nine of its next ten headers will be dropped and hence this potential for unexpected 
behavior. The standard states that the headers present in the first fragment are used to 
make the final reassembled packet14. However, this requirement is made with the 
assumption that fragments are only reassembled at the endpoint in which case the outer 
IP tunnel layers are gone (already processed). The case of a firewall reassembly 
midstream is unique and consequential. 
 
Re-fragmenting a tunneled packet after filtering is also an issue. If the reassembled 
packet is too big for the firewall to forward, should it re-fragment in the same manner the 
data arrived? If yes, then it would need extensive resources to remember how the packet 
was originally split and could potentially need to perform multiple fragmentation 
operations if both layers were originally fragmented. If it fragments only the outer layer it 
could produce unwanted effects with the new arrangement such as burdening a tunnel 
exit point with fragment re-assembly operations. Network administrators may set up 
fragmentation and tunneling to operate in a particular way for maximum efficiency and 
the firewall could alter their intensions.  
  
In conclusion, firewalls designed to filter multiple layers of IP traffic should avoid the 
fragmentation re-assembly approach due to the very high worse-case processing impact 
and the potential for creating unwanted side-effects. 

3.6.4 Recommendations for Firewalls that do NOT Reassemble 

3.6.4.1 Issue 1 (data extraction) and Issue 2 (overlap attacks) for Firewalls that do NOT 
Reassemble 

Firewalls that do not reassemble fragments need another strategy for dealing with these 
security issues. In IPv6, the minimum specified MTU15 is 1280 bytes, which is up from 
576 bytes in IPv4. An implementation of IPv6, therefore, cannot be forced (or expected) 
to fragment any packet that is 1280 bytes or smaller. If the link layer media cannot handle 
1280 bytes (e.g.; ATM) the fragmentation/reassembly must be performed by the link 
layer16.  
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Even with IPv6's extension headers and increased address size, 1280 bytes is a lot of 
space and it is a very reasonable expectation that the entire IP header (including 
extensions) plus the upper layer protocol headers will fit within a first fragment. The 
1280 byte space equals 320 four-byte words. A hypothetical worse-case packet using all 
of the known headers and options appears as follows (with the word size in parenthesis): 
IP main header (10), router alert option (1), routing header (50), home address option (5), 
fragmentation header (2), tunnel encapsulation option (1), mobile IP header (20), TCP 
(4)17. The routing header of 50 words assumes a very large number of defined hops 
(twelve) as a worse case. It is also very unlikely that any packet would use all of these 
headers simultaneously. Adding all of the headers up comes out to 93 words.  Doubling 
everything except the TCP portion gives 89+89+4 =182 words, which can be used to 
represent a worse-case IP-in-IP tunneled packet. 
 
This is still far below the 320 word boundary that corresponds to the 1280 byte MTU and 
thus it is reasonable for a firewall to expect that all extracted data will be found in the 
first fragment.  
 
A closer look at the construction of a fragment is warranted. An IPv6 fragment consists 
of an "unfragmentable part", an 8-byte Fragmentation header, and some number (n) 8-
byte blocks that make up the "fragmentable part".  See Figure 3-3 below.   
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Figure 3-3: IPv6 Packet Fragment 

The unfragmentable part consists of all data required for packet delivery, and therefore 
required to be present in each fragment as well. Typically, this will be the Hop-by-Hop 
Options and the Routing Headers, if they exist. All other headers in the original packet 
are placed in the fragmentable part.  It is incorrect to deduce that these remaining headers 
were designed to be in the fragmentable part for fear of a header being larger than the 
minimum MTU.  Instead, it is merely an efficiency measure. The unfragmentable part is 
minimized because it is repeated multiple times (once in every fragment).  
 
The Fragmentation Header contains a fragment offset field which indicates the starting 
position (i.e. the xth 8-byte block) of the data contained in this particular fragment.  For 
example, the first fragment always has an offset of 0x00.  If that first fragment contains 
120 8-byte blocks of data in the fragmentable part, the second fragment will contain a 
fragment offset value of 0x79 (decimal 121).  
A secure firewall design strategy for handling fragments needs to be able to extract a 
complete set of critical data required for filtering.  It is also preferable to extract all data 
from a single fragment to avoid the difficult task (in hardware) of maintaining state 
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across multiple packets. The expectation that all of the extracted data will appear in the 
first fragment has already been argued as reasonable. Furthermore, the integrity of the 
extracted data must be guaranteed by preventing subsequent fragments from overlapping 
back into the extracted data. 
 
The 1280-byte minimum MTU boundary is not very useful as a filtering condition as 
shown in Figure 3-4. The second fragment will contain a fragment offset value that bears 
no relationship to the overall packet size of the first fragment.  
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Figure 3-4: Fragment Offset Value 

If the unfragmentable part of the first fragment expands, the Fragment Header moves to 
the right and there is less room for the fragmentable part. The value n goes down in this 
case as the overall fragment size stays the same. A check to prevent fragment overlap 
must verify that the offset of fragment 2 (normally n+1) is not erroneously set to a 
smaller value that would overlap with fragment 1. This check is not a function of the 
1280 MTU size.   
 
There is also no guarantee that the first fragment will be 1280 bytes though that should be 
the normal case.  As an example of this, a 1500 byte original packet would probably be 
split into a 1280 byte first fragment with the remaining 220 bytes and unfragmentable 
part in fragment 2. It is not prohibited by the standard, however, to have an 800 byte/700 
byte split since the fragments are required only to "fit within the path MTU" to the 
destination.  Given that there is already a lot of complexity involving fragmentation-
tunneling solutions as stated earlier (RFC 4459), it is highly undesirable to create any 
constraint here by assuming that the first fragment will always be at least 1280 bytes. For 
these reasons, there should be no required checks based upon the fixed value of 1280. 
 
A better approach is to name a new boundary that will be referred here as the 
EVAL_SIZE as shown in Figure 3-5 below. The EVAL_SIZE is a number of 8-byte 
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fragment blocks from the start of the first fragment that is big enough to include all of the 
extracted data for filtering, and small enough to fit within the first fragment. 
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Figure 3-5: Design Recommendation, EVAL_SIZE 

The firewall must perform three checks to securely handle fragments using this scheme. 
These checks should be relatively straightforward to implement, friendly to reasonable 
traffic, adaptable to extreme traffic, and, most importantly, secure. It must verify that: 

1) There are at least EVAL_SIZE 8-byte blocks of "fragmentable part" data in the 
first fragment. 

2) All of the data required to be extracted for filtering is contained within those first 
EVAL_SIZE blocks of the first fragment. 

3) The fragment offset field of all non-first fragments is greater than EVAL_SIZE   
 
A default value of 60 is recommended for EVAL_SIZE though designers are encouraged 
to make this configurable to values higher and lower than 60, allowing firewalls to adjust 
to unusual environments18.  For example, packets with an extremely large amount of 
extension header data might require a larger EVAL_SIZE, whereas an environment that 
creates fragments much smaller than 1280 bytes may need to reduce the EVAL_SIZE.  
Once configured, the firewall would apply the chosen value to all fragment testing. The 
third check above is the only check performed on non-first fragments. If it passes, the 
fragment is allowed through without further processing.   
 
The main advantage of this scheme is that a fixed test can be applied to each fragment 
based solely on its own contents. There are no coordinated checks required across 
multiple packets such as trying to determine if n+1 of fragment 2 overlaps with what is 
defined in fragment 1. Instead, the fixed value of EVAL_SIZE cordons off the filtered 
data in fragment 1 and the checks to other fragments prevent overlap back into this space. 
Variance in header construction and/or variance in packet length can cause the value of n 
to increase or decrease as long as it never crosses the worse case boundary of 
EVAL_SIZE.  
The scheme addresses the first two security issues: data extraction and fragment 
overlaps19. Other approaches are possible but they must be secure with respect to these 
two issues.  Regardless of the scheme, it should be considered “reasonable” in IPv6 to 
drop a fragmented packet if the full set of filtering data is not contained in the first 
fragment.   



 

 
24 

 

3.6.4.2 Issue 3 (partial set of fragments) for Firewalls that do NOT Reassemble 
The process described above may drop a fragment while one or more remaining 
fragments still pass through. Although secure, the inside host wastes resources in this 
scenario, as it waits for reassembly timeout. A threshold mechanism should be 
incorporated to detect a certain number of dropped fragments from the same source 
address in a period of time. Upon activation of the threshold detector, the firewall should 
activate an alarm and/or temporarily block all fragments from the source. Administrators 
can quickly learn of the particular usage of headers or tunneling that is causing the 
firewall to drop fragments and take corrective action. The action of blocking a source 
address (rather than activating an alarm) should be optional to use since it could 
potentially become a means of a DOS attack.20 
 
A firewall should not take the approach of dropping all non-first fragments following a 
first fragment that has already been dropped. This will not be reliable because there is no 
guarantee that the first fragment is transmitted first. In fact, some designs send fragments 
in reverse order with the last fragment sent first so the receiver can immediately calculate 
the size of memory needed to store all of the fragments. 
 
A partial set of fragments can also be sent by an attacker as a deliberate DOS attack. A 
firewall that does not reassemble fragments can not easily detect or defeat this attack and 
it is the job of an administrator to correct. This should be tolerable since DOS attacks are 
relatively rare, highly detectable, and do not cause the permanent damage of other attacks 
(i.e. data loss or destruction). The reassembly timeout on inside hosts can be decreased 
from the standard default of 60 seconds to improve the resistance to these specific DOS 
attacks. 

3.6.4.3 Issue 4 (nested fragmentation) for Firewalls that do NOT Reassemble 
Nested fragments (issue 4) should be dropped regardless of whether the firewall 
reassembles fragments or not.  For non-reassembling firewalls, the detection of two 
Fragmentation headers within the set of extracted/filtered data should cause the packet to 
be dropped. Refer to section 3.9.1 for a proposed Header Ordering Algorithm that 
implements this check. 

3.6.4.4 Issue 5 (fragmentation and tunneling) for Firewalls that do NOT Reassemble 
 The scheme described above in section 3.6.4.1 is adaptable to extreme fragmentation-
tunneling scenarios, if the implementation offers EVAL_SIZE values other than just the 
default value. Firewalls that receive first fragments much less than 1280 bytes may need 
to reduce the EVAL_SIZE value and those that receive packets with extremely large 
headers (i.e. larger than the worse-case estimated in this document) may need to increase 
the EVAL_SIZE. Administrators should be able to find a workable setting in the event 
that tunneling causes one of these unusual variants to occur.  
 
Later in section 5.2, tunneling is discussed in more detail and with the objective of 
filtering both an inner and outer IP layer. Firewalls that filter multiple IP layers need a 
fragmentation-handling scheme that works in the worse case scenario where both IP 
layers contain fragments simultaneously. For the scheme described above, the default 



 

 
25 

 

EVAL_SIZE value of 60 8-byte blocks was chosen to protect enough bytes (from overlap 
attacks) to cover tunneled traffic in two layers of IP with all of the extension headers 
present.  To fully adapt the scheme to two layers of filtering; however, a little more work 
is required to apply the three required checks to each layer. The value of EVAL_SIZE for 
an inner IP layer must be decreased since there is less remaining data to be extracted. The 
default value for the inner IP layer should be 16 8-byte blocks (128 bytes) assuming it is 
the last IP layer to be filtered. 
 
Figure 3-6 below shows this worse-case scenario.  An originating host transmits a 
fragmented packet.  The fragment reaches a gateway where it enters a tunnel and must be 
fragmented again before being forwarded on to its destination21.  The packet encounters a 
firewall before reaching its final destination or the tunnel exit point. The firewall, 
therefore, sees a tunneled packet with fragmentation in both layers.   
 
The dashed lines in Figure 3-6 indicate that the IPA layer fragments are too big for the IPB 
tunnel layer and the remaining bytes are transmitted in a second IPB fragment. All of the 
data that needs to be filtered occurs in line (1) of Figure 3-6, that is, the packet containing 
the first fragment of both the inner and outer layers. 
 

Tunnel
  GW

Orig
Host

FW

IP  fragA 2

IP  fragA 1 IP  fragB 1
IP  fragA 1

IP  fragB 2 Remainder
of IP  fragA 1

IP  fragB 1
IP  fragA 2

IP  fragB 2 Remainder
of IP  fragA 2

(1)

(2)

(3)

(4)
 

 
Figure 3-6: Worse Case Fragmentation-Tunneling Illustrated 

The previously described scheme can be applied to both layers as follows.  Refer to 
Figure 3-7 below for an illustration of the EVAL_SIZEB boundary corresponding to the 
outer layer checks and EVAL_SIZEA corresponding to the inner layer checks. 
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IP  fragB 1
IP  fragA 1

EVAL_SIZE  (outer IP)B

EVAL_SIZE  (inner IP)A
 

Figure 3-7: Fragmentation Checks for two layers of IP 

The outer layer (IPB) requires non-first fragments to have offsets greater than 
EVAL_SIZEB in which case the whole packet is passed without further analysis (no inner 
layer analysis required).  Non-first fragments with offsets less than or equal to 
EVAL_SIZEB are dropped.  This corresponds to lines (2) and (4) of Figure 3-6: Worse 
Case Fragmentation-Tunneling Illustrated. 
 
Similarly, non-first fragments of the inner layer (IPA) must have inner offsets greater than 
EVAL_SIZEA in which case the packet is passed without further analysis.  Non-first 
fragments in IPA with offsets less than or equal to EVAL_SIZEA are dropped.  This 
corresponds to line (3) Figure 3-6. Therefore, all but one packet in this scenario, can be 
judged solely on the values of fragment offset fields. 
 
When the fragmentation offsets of both IPA and IPB are zero (i.e. first fragments in both 
layers), the processing continues and extracts the data needed for filtering.  Additionally, 
the EVAL_SIZEB boundary must occur prior to the end of the packet and the 
EVAL_SIZEA boundary must occur prior or equal to the EVAL_SIZEB boundary. Refer 
to Figure 3-7: Fragmentation Checks for two layers of IP.  EVAL_SIZEA can draw even 
with EVAL_SIZEB but must not extend beyond it. Finally, the full set of data required for 
filtering must occur within the EVAL_SIZEA boundary. 
 
Figure 3-8, below shows the normal case and some failures cases for processing the 
essential packet (i.e. both fragments offsets are zero). The checks on all other packets (i.e. 
non-first fragments) are trivial and not shown below. 
 
In summary, the fragmentation-tunneling scenarios are difficult to explain and illustrate 
as evidenced by the figures in this section. A scheme should be judged on how difficult it 
is to implement, not on how difficult it is to explain. The scheme presented here is 
believed to be easy to implement and does not require synchronization across multiple 
packets. 
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Good Case. 
 
 
 
 
Failed Case: A very large unfragmentable part of the outer 
layer results in less than EVAL_SIZEB blocks in the 
packet. This can also occur if the packet size is much less 
than 1280 (though that would be atypical). 
 
 
Failed Case: A very large number of extension 
headers in the fragmentable part of the outer layer pushes 
EVAL_SIZEA outside of the EVAL_SIZEB limit. 
 
 
Failed Case: A very large unfragmentable part of the  
inner layer pushes EVAL_SIZEA outside of the 
EVAL_SIZEB limit. 
 
 
 
Failed Case: A very large number of extension 
headers in the fragmentable part of the inner layer pushes 
extracted data outside of the EVAL_SIZEA limit. 
 
 
 

Figure 3-8: Tunnel-Fragmentation, Exceptional cases 

3.7 Mobility Header 
The Mobility Header is the third and final header used in the Mobile IP scenario.  
Although the Mobility Header is defined as an extension header, it is also required that 
its next header field hold the value 0x3B (no next header) so this header essentially acts 
as an upper layer protocol.   
 
Again refer to [9] for a complete analysis of Mobile IP filtering. From that analysis 
several filtering capabilities are identified. 
 
Firewalls must be able to resolve individual message types within the Mobility Header. 
Recognition of the Binding Update, Home Test Init, and Care-of Test Init in particular 
are needed, though a firewall should be able to filter any Mobility message type.  
 
In addition to the message type, the firewall must be able to resolve the H flag within a 
Binding Update message. This distinguishes between home agent bindings and normal 
correspondent bindings and is significant to the filtering strategy. Depending on the 
particular scenario, a firewall may need to drop all Binding Update messages or drop all 
Binding Update messages with an H flag=1. 

Extracted data
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Firewalls should verify that the next header field in any Mobility Header is 0x3B and 
drop any packet containing any other value. 
 
The as-condition style of filtering is recommended for the Mobility Header as the best 
means of being prepared for any situation. The on-presence style of filtering may be good 
enough in some designs, though a very careful study of the scenarios in [9] should be 
made before choosing the on-presence style.  The home agent element of the Mobile IP 
scenario will receive tunneled traffic containing a mixture of local traffic and relay traffic 
(reverse tunneling mode).  Firewalls need the ability to distinguish these two paths for 
messages with a Mobility Header. Depending on the firewall’s tunnel filtering 
capabilities and the physical nature of the home agent (i.e. one network interface or more 
than one), the filtering task may become complicated.  The as-condition style will make 
this easier to manage. 

3.8  ESP and AH 
The ESP and AH security headers are IPv6 extension headers; however, they are best 
treated by a firewall as if they were an upper layer protocol value.  The interaction of 
Firewalls and IPsec is handled as a separate topic in Section 6. Further details are 
deferred to that chapter.   

3.9 Header Ordering and Duplicate Extension Headers 
The firewall vendor community must reach a consensus on what is reasonable to accept 
in terms of IPv6 header ordering and occurrence. Throughout Section 3, the restrictions 
for individual headers and options have been identified according to their defining 
specifications (RFCs).  Here, an overall header ordering algorithm is proposed that 
incorporates these specified restrictions and also imposes some additional reasonable 
restrictions on the unacceptably unconstrained nature of IPv6 headers.  

3.9.1 IPv6 Header Ordering Algorithm 
The algorithm illustrated below in Figure 3-9 represents a process for approving/rejecting 
IPv6 headers due to header ordering, duplicate headers, or certain prohibited 
combinations of headers. This algorithm is applicable to a single IPv6 header chain (i.e. 
nested IP headers would be analyzed individually). This algorithm is limited to header 
construction issues which is only a subset of the total packet filtering task. 
 



 

 
29 

 

 
 

(1)    IPv6 Main Header Processing 
(2)    If HbyH:  

   Drop: invalid options, unknown options, duplicate options 
   Allow/process: Jumbo, Rout Alert, EndPt ID, future options 

(3)    If Dest Opt:  
  Drop: invalid options, unknown options, duplicate options 
  Allow/process: Home Adr, EndPt ID, Tunl Encap, NSAP, future options 

(4)    If RH_0: 
  Drop: If Home Adr=1,  
  Else Allow/process 

(5)    If RH_1 or RH_future: 
  Drop: If Home Adr=1,  
  Else Allow/process 

(6)    If RH_2:  
  Drop: If Home Adr=1,  
  Else Allow/process 

(7)    If Dest Opt:  
  Drop: invalid options, unknown options, duplicate options 
  Allow/process: Home Adr, EndPt ID, Tunl Encap, NSAP, future options 

(8)    If Frag: 
  Drop: If Jumbo=1 
  Else Allow/process 

(9)    If AH: 
  Allow/process, set Upper Layer Protocol=0x33    

(10)   If ESP:  
  Allow/process, then BREAK w/Upper Layer Protocol=0x32 

(11)   If Dest Opt:  
  Drop: Home Adr, invalid options, unknown options, duplicate options 
  Else Allow/process: EndPt ID, Tunl Encap, NSAP, future options 

(12)   If Mobil:  
Drop: If Home Adr=1 and not Binding Update, or If RH_2=1 and not 
Binding Ack 

  Else Allow/process, then BREAK w/Upper layer proto=0x87 
(13)   If HbyH, Dest Opt, RH_x, Frag, AH, ESP, or Mobil: 

  Drop packet, these headers are out of order 
(14)   If other value:   

  If AH=0, Set value as Upper Layer Protocol, process as appropriate 
  Else (AH=1) keep 0x33 as Upper Layer Protocol 
  BREAK 

(15)   If end of data reached:   
  Drop packet, incomplete data set for filtering 

  
Figure 3-9: IPv6 Header Ordering Algorithm 
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Abbreviations used in Figure 3-9 
 

 AH - Authentication (extension) Header, see section 6 
 Dest Opt - Destination Options extension header, see section 3.4 
  EndPt ID - Endpoint Identification option, see section 3.2.2 
 ESP - Encapsulating Security Payload extension header, see section 6 
 Frag - Fragmentation extension header, see section 3.6 
 HbyH - Hop by Hop Options extension header, see section 3.3 
 Home Adr - Home Address Destination option, see section 3.4.2 
 Jumbo - Jumbo Payload option, see section 3.3.1 
 Mobil - Mobility extension header, see section 3.7 
 RH_0 - Routing (extension) Header, Type 0, see section 3.5.1 
 RH_1 - Routing (extension) Header, Type 1, see section 3.5.2 
 RH_2 - Routing (extension) Header, Type 2, see section 3.5.3 
 RH_x - Any Routing (extension) Header see section 3.5 
 Rout Alert - Router Alert option, see section 3.3.2 
 Tunl Encap - Tunnel Encapsulation Limit option, see section 3.4.1 
 NSAP - NSAP Address option, see section 3.4.3 
 
 
 
The algorithm begins in step (1) with the processing of an IPv6 main header. As part of 
main header processing, a value is extracted from the next header field. This value is then 
evaluated by step (2) to determine if it is the Hop-by-Hop Options extension header. If 
the first header is the Hop-by-Hop Options extension header then it is evaluated as 
shown in step (2), else the header is compared against step (3). The correct usage of the 
algorithm is to continue to apply algorithm steps until a match is found and the action of 
that step applied. At that point, processing continues with the next header in the chain and 
with the next step in the algorithm. Once a step is reached, processing cannot go 
backwards or stay in place to evaluate the next header. In this manner, header ordering is 
enforced, particularly by the catchall step (13) that drops all packets matching that step. 
 
As an example, assume an IPv6 header chain consisting of the main header followed by a 
Type 2 Routing Header, followed by a Type 0 Routing Header. The algorithm would 
proceed to step (6) and process the Type 2 Routing Header. At that point, the Type 0 
Routing Header matches step (13) and the packet is dropped. The algorithm requires 
that a Type 2 Routing Header must occur after a Type 0 Routing Header if both are 
present. 
 
The notation “=1” is used to indicate the occurrence of a particular header thus far in the 
algorithm processing. For example, assume an IPv6 header chain consisting of the main 
header followed by a Destination Options extension header containing the Home 
Address option, followed by Type 0 Routing Header.  In this case, the Home Address 
Destination Option is matched by step (3) and allowed.  The Type 0 Routing Header, 
however, matches in step (4) and the packet is dropped because the algorithm states to 
drop if “Home Adr=1”, i.e. if the Home Address option has already occurred.  This 
enforces the specified restriction that the Home Address option must appear after any 
routing headers.  If ordering of the two extension headers in this example is reversed, the 
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Type 0 Routing Header matches in step (4) and the Home Address Destination Option 
matches in step (7) where it is allowed. 
 
The following qualifications are also important in understanding the intent of the 
algorithm: 

• The term “duplicate options” is meant to refer to any IPv6 options that occur 
more than once, whether it be in the same extension header or a subsequent one. 
This covers specified prohibitions of multiple occurrences of certain options such 
as the Home Address option and Router Alert option, and also applies the rule 
to all other options since there is no compelling reason to allow duplicates.   

• PAD1 and PADN are exceptions to the “duplicate options” rule as they are 
formatting constructs and may occur any number of times. 

• The “duplicate options” rule applies only to the IPv6 options, not to the 
Destination Options extension header itself, which may occur more than once 
with different options contained within. 

• The term “future options” and RH_future refers to any values chosen by the 
firewall design in anticipation of future expansion of IPv6 headers.  Processing of 
these headers would need to be a trivial on-presence filtering style since details of 
the option are not yet known. This however, may be useful in bridging the gaps 
between new headers and design upgrades. 

• The term “allow/process” means that the header is allowed at this point in the 
algorithm (not that the packet is declared to be allowed).  It also means to set an 
“=1” flag to indicate the occurrence of the header and any options encountered.  
The firewall may apply other processing within the algorithm to extract essential 
data from the headers that will be needed for the full analysis against the firewall 
security policy. The ordering algorithm alone can be thought of as some 
necessary pre-processing but does not indicate the full processing of the packet. 

• The word “BREAK” is used to indicate that this algorithm is terminated, though 
not necessarily in failure.  For example, after the processing of an ESP header, 
the algorithm aborts because all data beyond is assumed to be encrypted.   

• The algorithm BREAKs after Mobility Header processing because no more data 
is permitted according to specification. Processing a Mobility Header includes a 
check that the value of the next header field is 0x3B (i.e. no next header). 

• Step 12 processing stated here applies to the Mobility Header processing only, 
not to messages without a Mobility Header. It means that a Home Address 
Destination Option cannot occur with mobility messages other than the Binding 
Update and that the Type 2 Routing Header cannot occur with mobility 
messages other than the Binding Acknowledgement. This refers to the specified 
requirements in RFC 3775, section 6.1, paragraph 2.   

• Step 14 BREAKs because an upper layer protocol value has been reached. If this 
value is of the set of unassigned values, the packet should be dropped since it is 
not known if it is an extension header or a protocol. The term “process as 
appropriate” in step 14 refers to any additional processing that may be needed for 
certain upper layer protocols such as TCP, UDP, and ICMP. 
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• The upper layer protocol value is recorded as 0x33 when an AH header is 
encountered (Step 9). This can be overridden if an ESP header is also present 
(Step 10).  Firewall designers may instead opt to distinguish between ESP alone 
and AH+ESP though it should not be necessary. 

• The upper layer protocol value of 0x33, AH header, (Step 9) may also be 
overridden by a Mobility Header (Step 12), but not any other upper layer 
protocol (Step 14).  Currently, the Mobile IP specifications allow but do not 
recommend protection using AH22.   

•  “End of data reached” in step 15 means that the algorithm never obtained the 
upper layer protocol value before the end of the packet was reached.  Though 
unlikely, this could occur with normal fragmented packets. More likely, it 
indicates a hostile packet and should be dropped. 

3.9.2 Implications of the Header Ordering Algorithm 
Some of the noteworthy restrictions enforced by the header ordering algorithm of Figure 
3-9 are as follows: 

• If present, the Hop-by-Hop Options header must be the first extension header 
and it cannot appear more than once. (per RFC 2460, section 4.1, para 5) 

• Destination Option headers are allowed either prior to routing headers (RFC 
2460, section 4.1, para 2), just before the upper-layer header (RFC 2460, section 
4.1, para 2), or between routing headers and the Fragmentation Header (RFC 
3775, section 6.3, para 5). 

• Packets with multiple occurrences of a Fragmentation Header within an IPv6 
header chain will be dropped per recommendation made in section 3.6.3.3.  Also, 
multiple occurrences of Hop-by-Hop, Routing Headers of the same Type, 
Mobility Headers, and AH are dropped. 

• A Type 2 Routing Header must occur after a Type 0 Routing Header if both 
are present, per a “SHOULD” recommendation in RFC 3775, section 6.4, para 4. 

• A Home Address option can only occur in a Destination Options header located 
between Routing Headers and a Fragmentation Header if either of those exist. 
(per RFC 3775, section 6.3, para 5) 

• A packet will be dropped if it contains both a Fragmentation Header and a 
Jumbo Payload Hop-by-Hop Option (per RFC 2675) 

• If either the AH or ESP headers are detected AFTER the processing of a 
Mobility Header, the packet is dropped by Step 13, since the Mobility Header 
must occur after the security headers if they are present. In the case of the 
properly encrypted Mobility Header, the algorithm BREAKs in Step 10 without 
ever knowing about the Mobility Header within the encrypted portion of the 
packet.  Messages with Mobility Headers may or may not need to be encrypted. 
Step 12 accounts for the unencrypted messages such as those sent to a 
Correspondent Node in the mobile IP scenario. 

• All routing headers must occur prior to a Fragmentation Header. Though not 
stated explicitly as a requirement in the RFCs, if this restriction were not imposed, 
fragments could be reassembled only to be immediately re-fragmented when a 
routing header sends the packet to a different destination. This would be a 
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violation of the intent that no intermediate reassemble and/or fragmentation be 
performed. 

 
It should be emphasized that the above ordering algorithm only applies legality checks on 
header usage and construction. It does not account for the filtering policy of those 
headers. For example, step 4 says to allow/process a Type 0 Routing Header. It may be 
the case that the firewall is configured to drop all packets with this header type.  A drop 
by policy is not reflected in the algorithm. The header ordering algorithm would either be 
applied before policy filtering or in conjunction with it, per design decisions made for a 
particular firewall product. 
 
Running packets through this algorithm also allows data to be collected to support policy 
enforcement. For example, it would be possible to detect packets that have both a Home 
Address Destination Option and an ESP header, or a Type 0 Routing Header and ESP 
header.  

4 IPv6 Upper Layer Protocol Processing  
The processing of upper layer protocols is largely the same in IPv6 as it was for IPv4. 
 
Most of the protocol numbers used for IPv4 are carried over for IPv6. For example, TCP 
is still protocol 0x06 and UDP is still protocol 0x11 despite some minor changes such as 
requiring a UDP checksum.  ICMPv6, however, was given a whole new protocol number 
(0x3A) whereas ICMPv4 is protocol 0x01. Any v4-only or v6-only protocol that appears 
in the wrong version of IP should be considered illegal such as an IPv6 packet with a 
protocol value of 0x01, which is undefined. The firewall should drop these illegal cases 
by default. 
 
IPv6 also merges the extension headers with the upper layer protocol values in the same 
numbering space. For example, the Routing Header is protocol value 0x2B and the 
Fragmentation Header is value 0x2C.  These and other IPv6 extension headers are 
undefined if they occur in IPv4. 

4.1.1 UDP and TCP  
UDP and TCP stay mainly the same. Stateful filtering and any other advanced filtering 
features that have evolved for these protocols in IPv4 over the years are still applicable 
and needed in IPv6. 

4.1.2 ICMP 
Firewalls in IPv6 should to be able to filter individual ICMP messages based on both the 
Type and Code values to allow the maximum granularity with respect to these messages. 
IPv6 firewall designs should steer away from the IPv4 practice of automatically dropping 
all ICMP messages or lumping them into “all or nothing” settings. 
 
The ability to filter some of the new ICMP messages for IPv6 is essential (e.g. Neighbor 
Discovery, Router Renumbering).  Also, it will no longer be tolerable to drop other ICMP 
messages due to new IPv6 features (e.g. Path MTU Discovery). 
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5 Firewalls during IPv4-to-IPv6 Transition 
When both IPv4 and IPv6 are present in a network, a consistent filtering policy is needed 
for the two protocols. It should not be possible for an adversary to gain an advantage 
from choosing one version of IP over the other. For most upper layer protocols and 
applications, the IP version upon which they run is inconsequential. Consistency in 
filtering is achieved in the very straightforward manner of configuring the firewall’s 
access control policy equivalently for IPv4 and IPv6. A Telnet packet, for example, 
should not be blocked in IPv4 but allowed to the same node in IPv6.   
 
 The challenge to consistent IPv4/IPv6 filtering is in several areas: 

1) The few upper layer protocols and applications that are new and unique to IPv6, 
or significantly changed in a manner that affects security 

2) Differences in the basic IP header format and protocol  
3) Peculiarities of transition traffic  
 

New/improved protocols and applications (1) must be addressed by security analysis 
resulting in configuration guidance. New IPv6 header formats and protocol complexities 
(2) is the subject of Chapters 2 and 3 of this document. Transition traffic (3), is any 
unique traffic resulting from the coexistence of IPv4 and IPv6 packets, and is the subject 
of this chapter. 

5.1 Types of IPv4-IPv6 Transition Traffic 
Transition traffic follows three different approaches: Dual Stack, Tunneling, and 
Translation. Each of these general approaches is represented by numerous detailed 
schemes, called transition mechanisms by the Internet community, tailored for specific 
network scenarios or anticipated transition problems. 
 
The Dual Stack methods consist of equipping nodes to handle both IPv4 and IPv6 
packets. Other than the ability to handle both native IPv6 packets as discussed throughout 
this document and IPv4 packets, dual stacking does not present any additional challenges 
to the firewall.  
 
Likewise, Translation schemes produce packets that are either IPv4 or IPv6, and again do 
not present any additional challenges to the firewall. Depending on the placement of the 
translation mechanism, the firewall sees either IPv4 or IPv6 packets only. 
 
Tunneling schemes, however, do create unique traffic that are new to existing firewall 
designs. These transition mechanisms produce IPv6 tunneled within IPv4 or IPv4 
tunneled within IPv6. Ideally, firewalls will be able to filter the inner IP layer of tunneled 
traffic with the same granularity that they filter normal IP. If such firewalls are not 
available, more awkward means of decapsulating and filtering  (with additional firewalls) 
will be needed to achieve a consistent filtering policy for IPv4 and IPv6. 
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5.2 Filtering Tunneled Traffic 
Transition mechanisms based on tunneling are the most problematic to existing firewall 
designs. Since these mechanisms along with dual stacking are likely to be widely used, 
there is an urgent need for improved firewall capabilities in dealing with tunneled traffic.  
 
The discussion below is applicable to all combinations of IP-in-IP tunneling, not just v6 
tunneled in v4. If improvements to a firewall design are made, it makes sense to extend 
the capability to all combinations.  

5.2.1 IP-in-IP Tunnel Threats 
There are several RFC specifications that redundantly cover the same basic tunneling 
concepts. RFC 2003 [3] describes IPv4-in-IPv4 tunneling, RFC 2473 [4] covers the IPv4-
in-IPv6 and IPv6-in-IPv6 cases, and RFC 4213 [5] (formerly RFC 2893) covers the 
transition case of IPv6-in-IPv4. 
 
The prescribed security measures differ between the three specifications with RFC 2003 
and RFC 2473 containing no additional requirements to check or filter any condition. 
Security concerns are mentioned in these documents with recommendations to use IPsec 
for protection.  RFC 4213 does require one additional security check for configured 
tunnels. It requires the tunnel source address (outer IP layer) of an incoming tunnel 
packet to match that of the configuration information in the decapsulator.  The 
decapsulator automatically checks that the tunneled packets appear to come from the 
configured encapsulator. It also states that additional ingress filtering “MAY” be applied 
though there are no guarantees that this is implemented. 
 
Refer back to Figure 3-1: Double Benefit of Filtering Source Addresses, where the 
filtering of source addresses in (un-tunneled) IP was illustrated. An attacker had to first 
guess a valid source address and then find a way to subvert the routing system in order to 
receive a response packet from his attack. Then in Figure 3-2, the Type 0 Routing Header 
(or IPv4 source routing) was shown to eliminate half of that benefit by only requiring the 
attacker know a valid source address. The general consensus has been that this is too 
dangerous, and that IPv4 source routing is almost always disabled by firewalls. Now 
compare these cases to the case of tunneled traffic. 
 
Current firewall designs do not allow filtering of the inner IP layer of a tunneled packet. 
The outer source and destination IP addresses can be filtered along with the protocol type 
field, which is the value 0x04 for a tunneled packet with an IPv4 inner layer, and the 
value 0x29 when the inner layer is IPv6. This allows security administrators to 
enable/disable tunneling to particular endpoints (decapsulators) within their site by 
restricting type 0x04 and/or 0x29 to specific destination addresses. It also allows tunnel 
source address filtering exactly equivalent to the additional check mandated to 
decapsulators by RFC 4213 (for 6-in-4 configured tunnels only).   
 
Given that only the source and destination addresses of the outer IP layer can be filtered, 
refer to Figure 5-1 below.  This shows a network with a configured tunnel to a real user 
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A. Note that node n is a decapsulation point (likely a router) on the inside of the firewall 
such that the firewall sees tunneled packets. 
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Figure 5-1: Filtering Source Address of Tunnel Traffic 

The real user sends tunneled packets and the firewall verifies that the outer source and 
destination are allowed to pass tunneled traffic. Responses to this allowed traffic from the 
server return to node n and are tunneled back to the real user. There is nothing in tunnel 
packet processing that forces the return packet to be tunneled. It is merely routed as 
normal and it is shown tunneled here under the assumption that a properly configured 
tunnel would be set up bi-directionally. This is not a consequence of the incoming packet, 
but rather of the routing configurations of the inside network.   
 
Next, we see that the attacker has spoofed the outer IP source address (A) and sent an 
inner packet with his own source address (B).  Since the firewall (and the decapsulator 
using the RFC 4213 check) both verify only the outer source IP address, this packet gets 
through.  The return packet is not shown tunneled back to the attacker since the internal 
network is not configured to tunnel packets to address (B). Instead, it escapes back out 
through default routing.    
 
Tunneling can be exploited by an attacker, when there are no checks on the inner packet. 
The attacker need only know a valid outer source address of an existing tunnel. In 
conclusion, an IP-in-IP tunnel with filtering only on the outer source address produces the 
same level of threat as allowing IPv4 source routing. 

5.2.2 IP-in-IP Tunnel Filtering Solutions 
The above threats can be countered either by improving the firewall’s capabilities or by 
using more than one firewall (or filtering device).   
 
If, in the example above, the firewall allowed tunneled traffic only to internal destination 
n, and a second firewall filtered everything that came out of the tunnel endpoint at n, the 
full packet filtering would be applied to the inner layer. This works with the obvious 
disadvantage of doubling the numbers of firewalls required. If tunnel-filtering firewalls 
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are unavailable, this will be the only option short of disabling the use of tunnels 
altogether. 
 
A tunnel-filtering firewall would have the capability of filtering both IP layers within the 
same device. The downside is a more complicated firewall design. To prevent attacks of 
the form shown in the previous section, a firewall would need the ability to filter the 
inside IP addresses against a security policy. In addition to the addresses though, it is the 
whole inner packet should be filtered. Otherwise a similar attack would be possible in 
which the real user sends packets with disallowed protocols/ports on the inner layer.   
 
The recommendations here consist of a primary and secondary filtering task. The intent is 
that all firewalls should have the capability to perform at least the primary task, which is 
an improved version of the existing capabilities described above. Firewalls designed to 
filter both IP layers would need to incorporate both the primary and secondary tasks. See 
Figure 5-2 below. 
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Figure 5-2: Primary and Secondary Tunnel Filtering 

 
The primary filtering task includes the source and destination addresses of the inner IP 
layer, which is more filtering capability than is currently available. The primary tunnel 
filtering would be implemented in a manner similar to filtering the TCP protocol with 
configurable port values. In this case, protocol fields are 0x04 or 0x29 and the 
configurable values are the inside source and destination IP addresses.  The capability 
allows a firewall to impose very basic source filtering on the inner layer of tunneled 
traffic and to regain the dual security benefit described back in Figure 3-1. This can be 
thought of as a restriction on tunnel usage (the WHO) though not the tunnel content (the 
WHAT).  Such filtering is achieved without a huge increase in complexity to current 
design strategies.  
 
The ability to wildcard any of the addresses should be allowed.  Furthermore, filtering 
rules should allow the inner layer IP addresses to be version 4 or version 6 addresses 
regardless of the version of the outer addresses. Wildcards must be disambiguated with 
respect to version 4 and version 6. 
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Incorporation of the secondary filtering task is an increase in complexity because a 
packet essentially needs to be filtered twice. This will increase throughput delays for a 
packet and will impact performance. The extra cost to support this function however 
should be compared against the only other option; buying two firewalls.  
 
The Secondary filtering applies only to the inner IP layer. The inner layer headers, IP 
addresses, protocols, ports, etc., are filtered against a policy in the same manner that a 
normal (untunneled) packet is filtered today.  
 
The primary filtering task can be used to direct certain packets into the secondary 
filtering. For example, if a tunnel packet matches a primary filtering rule, the action could 
be pass, drop, or forward to secondary filtering. Some combinations of inner/outer 
addresses may allow the firewall to drop the packet without incurring the burden of 
secondary filtering.   
 
The combination of primary and secondary rules can be used to allow certain types of 
traffic to be tunneled only from specific sources.  The filtering overlap at the inner IP 
addresses, allows this capability.  For example, a site may have tunnels inbound from 
several remote sites, but wants to allow Telnet to enter through only one of those tunnels.  
The Primary filtering is set to allow inner source address(es) Y to occur only with outer 
source address(es) X. The secondary filtering allows Telnet only for source address(es) 
Y. 
 
Another possible scenario is provided by Mobile IP (See reference [9]).  In this scenario, 
tunneled traffic into a Home Network consists of some traffic destined for internal nodes 
and some traffic being relayed in support of the reverse tunneling mode of Mobile IP 
operation. A firewall will want to use the primary filtering task to direct the internal 
(home network) traffic into secondary filtering and may want to send all other traffic out 
with no secondary filtering at all.  Additionally, the Mobile IP tunneled traffic will 
continually arrive from new tunnel source addresses as the mobile node moves around.  
Therefore, the firewall would choose not to filter tunnel source addresses or inner source 
addresses.  Instead, traffic is restricted to the home agent, which is tasked with making 
these checks. 
 
There are a variety of different types of tunneling requiring different filtering, and a two-
prong approach (primary and secondary filtering options) is more likely to provide the 
desired flexibility.    
 
Another big advantage of the primary and secondary filtering approach is that the 
complexity manifests as increased hardware but not a radically new design approach.  
The primary filtering is largely the same as a basic IPv6-capable firewall except for the 
ability to direct packets into secondary filtering. The secondary filtering is essentially 
another instantiation of the same design.  Some functions will likely still need to be 
coordinated across both layers of filtering, (e.g. refer to the fragmentation-tunneling 
recommendation in 3.6.4.4). 
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The inner IP layer may not require exactly the same configured filtering policy as a 
packet that arrived un-tunneled. For example, there may be some addresses (private 
addresses or site local addresses) that a site allows tunneled in that would have been 
dropped otherwise. A design should allow for separate filtering policies for the inside and 
outside layers even though they may end up being very similar.   

5.2.3 Other Security Checks for Tunnels 
Any restrictions on duplicate IPv6 options or extension headers described in section 3.9 
should NOT be applied across IP layers. Each layer is filtered separately with regard to 
header legalities including the Fragmentation header.  Fragmentation is not considered to 
be “nested” if it occurs in separate IP layers. 
 
As stated in section 3.1.1, the firewall should check and drop any packet for which the 
protocol field (0x04 or 0x29) of the outer layer does not match the version of the inner IP 
layer (IPv4 or IPv6 respectively). 
 
Firewalls should be configurable to drop any packet that emerges from a tunnel with a 
value of 255 in the hop limit field of the main header. If this condition is allowed, it can 
be used in certain known attacks.  Specifications require the encapsulators to decrement 
the hop limit of the inner layer packet so there are no cases where a value of 255 is legal. 
Firewalls should allow this check to be enabled/disabled. 

5.2.4 Fragmented Traffic and Tunnels 
Fragmentation reassembly by a firewall in conjunction with filtering multiple layers of IP 
is very complex and may produce unwanted side-effects (see section 3.6.3.4). Schemes 
for filtering fragments without performing packet reassembly should be applicable or 
adaptable to multiple IP layers (see section 3.6.4.4). 
 
Firewalls must be able to extract all of the necessary header information from every 
packet in order to correctly apply the filtering policy. For unfragmented packets, the 
header ordering algorithm (section 3.9) includes a check at the end to enforce this 
requirement. The first fragment of a fragmented packet is more likely to terminate 
prematurely, hence the schemes offered in section 3.6.4 enforce this requirement as well. 
Fragmentation must not be allowed as a means to escape filtering. 

5.2.5 Other Types of Tunnels 
The feasibility of filtering other types of tunnels must be decided on a case-by-case basis.  
An existing IP-in-IP filtering design may be extended to handled other mechanisms. For 
example, Generic Routing Encapsulation (GRE) tunneling (RFC 2784) with IP as the 
inner (tunneled) data would be easily added to a design that already filters the IP-in-IP 
case. 
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6 IPv6 Firewalls and IPsec 

6.1 The Filtering vs. Communications Security (COMSEC) Strategies  
There are two primary strategies in use today for achieving network security: a filtering 
strategy and a COMSEC strategy. COMSEC is a DoD term used to refer to any system 
that employs an encryption mechanism as a complete security layer across all traffic. 
IPsec is an encryption mechanism that can be used to employ the COMSEC strategy.  
Firewalls are the typical means for employing the filtering strategy. 
 
A filtering strategy or COMSEC strategy is used to strengthen a network by mitigating 
weaknesses that may exist in internal nodes and applications. The weaknesses 
(specification errors, design flaws, software bugs etc...) are still present, but the adversary 
cannot exploit them.  
 
Filtering and COMSEC strategies are very different in how they mitigate network 
weaknesses. Firewalls inspect and scrutinize packet content (the WHAT) and drop any 
traffic that looks dangerous or unnecessary according to a policy. The challenge is to 
define the policy and create the filtering capability that can drop unwanted traffic without 
dropping necessary traffic.  
 
With the COMSEC strategy, however, the packet sender (the WHO) is most important 
quality. The cryptographic mechanisms positively identify a sender and also bind the 
traffic to that sender. The packets are allowed or dropped based on whether they came 
from an authorized source.  The WHAT is not as important and a COMSEC strategy 
usually has far less capability to scrutinize the actual packet contents; maybe none at all 
depending on where it is implemented in the stack. COMSEC also provides additional 
security properties such as confidentiality, integrity, and non-repudiation. 
  
Filtering is considered a weaker strategy because it can’t really know if traffic is 
legitimate, only that it looks good. COMSEC is considered strong security because it 
verifies (with very high probability) that traffic comes from a legitimate source.  The 
choice of which to use is not as straightforward. COMSEC systems must have existing 
trust relationships for support. Since the WHO is used as the security linchpin, there must 
be a clear distinction between who is allowed and who is not. The COMSEC strategy 
works well in a closed network community between trusted parties, but cannot be applied 
effectively in an untrusted environment (e.g. the public Internet). 
  
Both of these strategies are different and both are needed in today’s varying network 
environments. 

6.2 Handling IPsec at the Firewall 
Given that the filtering and COMSEC strategies are fundamentally different, it stands to 
reason that their security policies are not interchangeable. The access control policy of 
the firewall, therefore, should not apply to traffic containing an AH or ESP header. Even 
though AH and ESP are extension headers they should be treated as if they are the upper 
layer protocol from the standpoint of the firewall. In fact, the ESP header prohibits any 
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further packet inspection because the data is encrypted. The AH header, although non-
encrypting, should also override the filtering of the upper layer protocol that follows. 
This is not a hole in the firewall, but merely a deference from one security model to 
another. If a packet contains an IPsec header, the IPsec mechanism should handle it. 
 
As an example, a firewall may be configured to drop all Telnet packets because Telnet is 
dangerous in the hands of an attacker. If the packet contains an AH header followed by 
Telnet, the firewall should defer judgment (not drop) to the IPsec implemented at the 
packet’s destination. If there is no IPsec implemented or enabled at the destination, the 
packet is dropped there. The end host does not have the option of ignoring an AH header 
and accepting the packet anyway. 
 
It is important to be able to filter the AH and ESP packets in conjunction with other 
extension headers.  Examples are with the Home Address Destination Option per 
section 3.4.2  and the Type 0 Routing Header per section 3.5.1. 
 
The header ordering algorithm in section 3.9 declares the AH or ESP security headers to 
be the upper layer protocol except when an AH is followed by a Mobility Header.   

6.3  IPsec and Firewall Combinations 
A likely and preferred scenario consists of a firewall protecting IPsec device(s) behind it 
as depicted in Figure 6-1. Case (A) in the figure shows a firewall shielding the IPsec 
device from unwanted traffic, potential DOS attacks, etc...  Case (B) shows that part of 
the internal network may be IPsec-protected and the rest in need of robust filtering  
protection. A network employing a DMZ is an example of Case (B).   
 

Internal
 Network 2

IPsec
Internal
 NetworkFWOutside(A)

(B) IPsec
Internal
 Network 1FWOutside

 
 

Figure 6-1: Preferred Firewall and IPsec Combinations 

These are preferred scenarios because the IPsec is positioned to completely protect a 
network or segment thereof. The firewall is positioned to provide additional protection to 
the IPsec-protected network. In order to achieve a true COMSEC strategy, the IPsec in 
these examples must be configured to block all unencrypted traffic, which is not always 
achievable operationally.  If the IPsec protects only some traffic and passes other traffic 
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in the clear, the overall strategy is a filtering strategy with encryption enhancements; a 
less than optimal situation. 
 
Sections 6.2 and 3.9 above recommend that the ESP and AH headers be considered the 
upper layer protocols so that the scenarios of Figure 6-1 are easily supported.  Firewalls 
can direct the protected traffic to internal IPsec destinations while still fully filtering 
unprotected traffic. 
 
A firewall could also be used behind an IPsec device as shown in Figure 6-2. Although 
this scenario does not present any special demands on the firewall, it is also not likely to 
be needed. The IPsec model already provides basic access control over traffic types, 
down to the protocol and port level. IPsec does not have as many detailed filtering 
capabilities, but these are arguably not needed in the trusted IPsec system. Virus scanners 
and IDS devices are more likely to be used inside of an IPsec-protected network. 
 

IPsec
Internal
 NetworkFWOutside

 
Figure 6-2: Unlikely Firewall and IPsec Combination 

 
As shown in Figure 6-3 below, a firewall and IPsec implementation could be combined 
side-by-side into a single security device (e.g. an encrypting firewall) though this is not 
an optimal situation. This is exactly the same as the case described above for Figure 6-1 
when IPsec is configured to allow some traffic to pass unprotected. The IPsec terminates 
at a point where unencrypted traffic is passed through the firewall.  The weaknesses of 
the firewall model threaten the IPsec model in this case.   
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Figure 6-3: Sub-optimal Firewall and IPsec Combination 

In conclusion, IPsec is most effective when it can be deployed as a true COMSEC 
strategy such that all traffic is protected at an IPsec boundary. Network designers should 
strive to partition their networks in this manner if at all possible. The IPsec 
implementation can be moved inward to protect only part of a network or even moved all 
the way to the end hosts.  Of course, the IPsec can only be pushed back so far. Once there 
is a single node that must send both protected and unprotected traffic, the overall system 
becomes sub-optimal (i.e. the weaker filtering strategy). 
 
The filtering strategy, though weaker than a COMSEC strategy is sometimes the only 
option. Operational requirements may demand communications between networks for 
which no trust relationships exists or no cryptographic keys can be established.  The 
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standard Mobile IP scenario is also an example of the filtering strategy.  Even though 
IPsec is employed, the Mobile IP home agent only uses it in a very limited manner to 
protect specific Mobile IP traffic.  

7 In Summary 
As promised at the outset, this document does not declare requirements but attempts to 
identify where the security issues are with IPv6 and firewall design. Designers are 
encouraged to implement as much of the functionality as possible and to provide 
feedback to the author regarding areas that are problematic for modern firewall design. 
 
The areas deemed to be most important are: 

• An  ability to recognize all extension headers and locate the upper layer protocol 
information 

• The header ordering algorithm or some modified version of it to account for 
illegal, duplicate, and unreasonable header constructs 

• Some solution to the inspection of fragmented packets or the ability to drop them 
• At least the minimal tunnel filtering capability described as the “Primary Tunnel 

Filtering” 
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Endnotes 
                                                           
1 RFC 2460, section 4.1, paragraph 2 
2 RFC 2460, section 4.1, paragraph 5 
3 IANA is the Internet Assigned Numbers Authority 
4 RFC 2460, section 4.2, paragraph 3 
5 This restriction is also incorporated into the header ordering algorithm presented in section 3.9. 
6 RFC 3775, section 6.3 
7 This wording is to emphasize that Routing Header and security header combination should be allowed, 
but that other header checking is still performed. 
8 RFC 3775, section 6.4, paragraph 2 
9 Since this characteristic is being relied upon, security testing of routers and nodes should include tests to 
verify that the Type 2 Routing Header cannot be forwarded beyond the original destination. 
10 RFC 2460, section 4.5 
11 The wording “second fragmentation header to appear in an IPv6 header chain” was chosen instead of  
“second fragmentation operation to be applied to a packet” to make it clear that a tunneled IP packet with 
separate inner and outer IP headers may in fact be legally fragmented twice (once in each IP layer). Nested 
fragmentation only refers to two fragmentation headers occurring in the same IP header chain. 
12 RFC 2460, section 4.1 paragraph 5 
13 "deep packet inspection" is a marketing term referring to a more recent trend in firewalls whereby 
application data is filtered for suspicious content, virus signatures, etc.... 
14 RFC2460, Section 4.5, last paragraph 
15 MTU: maximum transmission unit, is the number of bytes of the largest packet that a link layer is 
capable of forwarding 
16 Note that link layer fragmentation does not affect firewall filtering because a firewall is a link 
terminating device. 
17 The Jumbo Payload option is not included in this calculation since it is illegal in a fragmented packet 
18 The default value of 60 is chosen based on the size of the worse case header example provided earlier in 
the section for a tunneled packet (i.e. 182 4-byte words).  Of the 182 words, 114 words are in the 
fragmentable part, which corresponds to 57 8-byte blocks.  This is rounded up to 60 to allow for the 
presence of padding. 
19 The second and third checks ensure the completeness and integrity of the filtered data. The first check is 
a necessary consequence of the scheme since normal non-first fragments would fail the third test if the 
EVAL_SIZE boundary were allowed to drift into the 2nd fragment.   
20 The attacker could send packets to deliberately activate the threshold detector thereby disabling that 
source address at the firewall. 
21 The optional IPv6 Path MTU Discovery function is supposed to prevent these double fragmentation 
scenarios by communicating the “tunnel MTU” back to the originating host, but in this worse-case scenario 
it is assumed this is not operable for some reason. 
22 RFC 3775, Section 5.1, para 1 
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