

Department of Veterans Affairs

IPv6 Enablement Support Services

IPv6 Applications Testing Best Practices

CLIN #: 0005AB

Contract: VA118-11-P-0096

Solicitation Number: VA118-11-RP-0611

June 29, 2012

Version 0.1

 Department of Veterans Affairs

IPv6 Enablement Support Services

IPv6 Applications Testing Best Practices 6/29/2012 i

Revision History

Version Purpose Author Function Date

V0.1 Draft TVG 06/29/2012

* The following symbols can be used to represent the type of change noted:

A = Added

M = Modified

D = Deleted

 Department of Veterans Affairs

IPv6 Enablement Support Services

IPv6 Applications Testing Best Practices 6/29/2012 ii

Table of Contents

1 EXECUTIVE SUMMARY .. 4

2 INTRODUCTION .. 5

2.1 SCOPE ... 7

2.2 ENVIRONMENT, ORGANIZATION AND METHODOLOGIES ... 8
2.3 ASSUMPTIONS AND CONSTRAINTS .. 9

3 GOTS APPLICATION DEVELOPMENT BEST PRACTICES (SYNOPSIS) 9

3.1 TECHNICAL IMPACT OF IPV6 ON EXISTING APPLICATIONS .. 9
3.1.1 Network information storage/display ... 9

3.1.2 Resolution and address issues .. 10
3.1.3 Communication APIs (raw socket code, etc.) ... 11

3.1.4 Socket Address Structures Specifics .. 12
3.2 CO-EXISTENCE METHODOLOGIES/MECHANISMS .. 14

3.2.1 Dual stack approaches for applications ... 15
3.3 INTERNET ENGINEERING TASK FORCE APPLICATION SUPPORT RECOMMENDATIONS 17

3.3.1 Application Programming Interfaces (APIs) .. 17

4 APPLICATION TESTING BEST PRACTICES SUPPORTING IPV6 18

4.1 TESTING PROCESS... 19
4.1.1 Requirements... 19
4.1.2 Software Quality Assurance .. 21

4.2 TEST ENVIRONMENT ... 21
4.2.1 USGv6 and VA Compliance .. 21

4.2.2 Code Base ... 22

4.2.3 Test Architecture ... 24

4.3 TEST CASES AND CRITERIA .. 25

 Department of Veterans Affairs

IPv6 Enablement Support Services

IPv6 Applications Testing Best Practices 6/29/2012 iii

List of Figures

FIGURE 1: NAME RESOLUTION ...10

FIGURE 2: PROTOCOL SPECIFIC COMPARED TO PROTOCOL INDEPENDENT – IP

VERSUS NAME ...11

FIGURE 3: USING A COMMUNICATIONS LIBRARY TO SEPARATE APPLICATIONS

FROM THE IP ADDRESS STRUCTURE ..11

FIGURE 4: PROTOCOL SPECIFIC COMPARED TO PROTOCOL INDEPENDENT -

STORAGE ...14

FIGURE 5: IPV4 CLIENTS AND IPV4 SERVER IN AN IPV4 ONLY NODE16

FIGURE 6: MIXED CLIENTS AND IPV6 SERVER IN AN IPV6 ONLY NODE17

FIGURE 7: VA IPV6 STRATEGIC OBJECTIVE ..22

FIGURE 8: TYPICAL HOST PLATFORM APPLICATION ARCHITECTURE24

FIGURE 9: APPLICATION TEST ENVIRONMENT ..24

List of Tables

TABLE 1: IPV4/ IPV6 DUAL STACK COMBINATIONS ..15

TABLE 2: DUAL STACK COMBINATIONS ...16

TABLE 3: “IPV6 & USGV6 COMPLIANCE TEST CAPABILITY” REFERENCE20

TABLE 4: TEST CASE ONE ...25

TABLE 5: TEST CASE TWO ..26

List of Appendices

APPENDIX A - REFERENCES .. I

APPENDIX B - GLOSSARY AND KEY TERMS .. IV

APPENDIX C - CODE EXAMPLES ... VII

APPENDIX D – TESTING SERVICE TESTING GUIDE XXVIII

APPENDIX E – VISTA CPRS TEXT INTEGRATION UTILITIES (TIU) GENERIC

HL7 INTERFACE HANDBOOK (TEST APPENDIX) EXAMPLE FOR REVISION ... XLI

 Department of Veterans Affairs

IPv6 Enablement Support Services

IPv6 Applications Best Practices 6/29/2012 Page 4 of 68

1 Executive Summary

The Department of Veterans Affairs (VA) has been a leader in the United States Government’s

transition to the next generation Internet Protocol (IP) designated IP version 6 (IPv6) actively

since 2003. As a leader, VA has continuously and consistently been at the forefront of the

federal government efforts. VA’s attention to detail and perseverance enabled the department to

be fully prepared when the Federal CIO released a directive setting deadlines for agencies’

transition to IPv6. This directive was released with the finally realistic expected exhaustion of

the original IP addresses (designated IP version 4 (IPv4)) coming very shortly in the next three

years. Released in September of 2010, the directive titled “Transition to IPv6" stipulated two

enterprise network goals for all federal agencies, and this document is intended to support the

VA’s efforts in attaining the 2014 objective, and creating the technical foundation to afford the

evolution of IPv6 enabled applications into the future.

The risks associated with a full enterprise transition to sustain both IPv4 inside our enterprises as

well as IPv6 are staggering. One such risk is with the applications, both Commercial Off The

Shelf (COTS) and Government Off The Shelf (GOTS). Realized worldwide, transitioning

applications to support IPv6 is one of the greatest challenges associated with the overall

enterprise transition to IPv6, in both the public and private sectors. This is due to the majority of

applications today using the network in some form in a sole IPv4 environment. This is due to the

long standing, appropriate for the time, practice of using the only available IP address in order to

connect to other applications and databases on other platforms over the enterprise. Partly, this is

due to a software design approach referred to as “Client/Server architecture”, however, if for no

other reason, the applications access the network to check for updates, or download for security

patches. With the mission functionality provided today with the IPv4 potentially hard coded

addresses embedded within the VA GOTS or mission defined software applications, the

acknowledged IPv6 transition industry best practice is to commence coding all future

applications to be “Protocol Independent”. This Protocol Independence (PI) enables the use of

either IPv4 or IPv6 as available to those applications from their platforms’ respective operating

systems. A date from which future software development must use the PI approach provided in

this document must be established.

The last best practices element to consider is what lies beyond simple compliance. PI establishes

the minimum. The focus today provided by the Federal IPv6 Task Force is on the requirement

for functional parity between IPv4 and IPv6, with an emphasis, as always, on security

implementations. In other words, the same functionality available within an IPv4 environment

must be available in an IPv6 environment. This minimum standard is established in order to

create a baseline threshold of requirements. However, industry best practices recommend that the

actual designed-in benefits of applying IPv6, regarding different software design architectures,

should be investigated by senior software developers and enterprise architects. Then, it is

inserted into their agencies’ future software architectures at the soonest opportunity. IPv6, as

designed, brings multiple lessons learned from the deployment of IPv4, and so, through a

thorough engineering analysis of what IPv6 enables far beyond IPv4, software developers and

enterprise architects should move beyond simple IPv4 parity at their earliest opportunity.

With coding of applications comes the requisite testing. The VA enjoys a rigorous and structured

software development organization, staffed with knowledgeable experts in this field. Software

 Department of Veterans Affairs

IPv6 Enablement Support Services

IPv6 Applications Best Practices 6/29/2012 Page 5 of 68

testing is a known fact. However, with IPv6 involved, there are new standards and approaches to

take into consideration. The development of the USGv6 Profile Process and Test Program was

initiated by the OMB 05-22 memorandum to provide agencies with a common taxonomy and

framework to provide acquisition specifications for IPv6 devices and an industry-based test

program. The USGv6 effort was later included in the FAR as a requirement for agencies to

utilize when acquiring IT devices. While the USGv6 program developed and administered by

NIST goes a long way to provide agencies with a valuable tool to acquire IPv6 compliant

devices, a review of specific VA mission and IT infrastructure requirements identify several

areas that require expansion to meet VA’s IPv6 transition needs. The VA Enablement program

has chosen to establish a test program that establishes the IPv6 testing standard within the VA to

meet the VA’s specific mission needs. This document provides a specific testing approach in line

with the VA Enablement program’s initiatives regarding applications developed via an approved

software engineering effort.

2 Introduction

For the past nine years, the Department of Veterans Affairs (VA) has been a leader in the United

States Government’s transition to the next generation Internet Protocol (IP), engaged in the

discussion of transitioning to this next generation IP (designated IP version 6 (v6)), actively

since 2003. As a leader, VA was involved in early initiatives led by the US Department of

Defense and the Office of Management and Budget (OMB) stakeholders that drove agencies to

demonstrate progress in areas of standardization and testing/certification. The culmination of this

preparation for the eventual government-wide IPv6 core backbone integration and transition was

the release by OMB of their memo M05-22. Based on the results, in July 2008 OMB announced

that all major agencies met the June 30, 2008 deadline for successfully demonstrating their

adoption of IPv6 technology.

At the time, the Department of Veterans Affairs (VA) was singled out as one of the few agencies

to fully embrace the effort and achieve more than just meeting the minimum expectation.

However, there was more to be accomplished. The efforts of other agencies within the

government had chosen to let lapse the initiatives taken to achieve their 2008 milestone, while

VA continued per their own funding capacity. Due to the lack of efforts across the federal

landscape, the Federal CIO Council released the “Planning Guide/Roadmap Toward IPv6

Adoption within the US Government” in May 2009, and on page 19 offered an industry best

practice transition plan outline. The document was the result of a private/public partnership in

which the IPv6 industry provided a tremendous insight into the lessons learned of incorporating

IPv6 into existing enterprises. This document was intended to jump-start the lagging efforts

known to many to be shortly required, and VA’s lessons learned were inserted liberally into this

document as an example to other federal agencies.

With the finally realistic expected exhaustion of the original IP addresses (designated IP version

4 (IPv4)) coming in the next few years, the then Federal CIO, Vivek Kundra, released a memo in

September of 2010 titled “Transition to IPv6" stipulating two enterprise network goals for all

federal agencies:

Update public facing/external servers and services to native IPv6 by the end of FY 2012; and

 Department of Veterans Affairs

IPv6 Enablement Support Services

IPv6 Applications Best Practices 6/29/2012 Page 6 of 68

Upgrade internal client applications that communicate with public Internet servers and

supporting enterprise networks to use native IPv6 by end FY 2014.

The memo created the Federal IPv6 Task Force, and initiated the next stage of the entire US

Government transition to IPv6.

The memo was timely. On February 3rd of 2011, the Internet Assigned Numbers Authority

(IANA) distributed the last available IPv4 addresses to the five Regional Internet Registries

(RIRs), signaling to the world that the approximate 4.3 billion IPv4 addresses used in the Internet

and all computer networks have been issued, and no more addresses are available. On April 15th

of 2011, one of the RIRs (Asia-Pacific region) exhausted its supply of IPv4 addresses, and can

only provide IPv6 addresses to those who wish to create an access point to the Internet. The other

four regions (including North America) are warning their respective constituents to commence

transition to IPv6 now, before being forced to do so due to complete IPv4 exhaustion.

With the issuance of CIO’s memo came action from the VA. The VA IPv6 Transition Project

Management Office (PMO) is now established, with the appropriate governance structure. The

lessons learned from the previous years’ endeavors applied, and the risk management process

enabled. This document is to address one of the risks identified as having the greatest impact and

highest probability of occurrence, software application transition to the new IPv6 standard (while

still supporting legacy IPv4 interoperability). This document is a companion to the applications

development best practices due to the specific discrimination between the software developers,

and those who test the applications.

Transitioning applications to support IPv6 (and accurately testing them) is one of the greatest

challenges associated with the overall enterprise transition to IPv6, in both the public and private

sectors. This is due to the majority of applications today using the network in some form in a

sole IPv4 environment. This is due to the long standing, appropriate for the time, practice of

using the only available IP address in order to connect to other applications and databases on

other platforms over the enterprise. This is partly due to a software design approach referred to

as “Client/Server architecture”, however, if for no other reason, the applications access the

network to check for updates, or download for security patches. With the mission functionality

available with the IPv4 potentially hard coded addresses embedded within the VA software

applications, the acknowledged IPv6 transition industry best practice is to commence coding all

future applications to be “Protocol Independent”. This Protocol Independence (PI) enables the

use of either IPv4 or IPv6 as available to those applications from their platforms’ respective

operating systems. A date must be established from which all future software development must

use the PI approach provided in this document. Secondly, the question to be answered is what

applications can be transitioned to operate in a protocol independent manner in the most

expeditious manner, which ones must wait for sufficient engineering effort, and what

applications cannot be reasonably transitioned (and ultimately replaced at a much later date).

The focus provided by the Federal IPv6 Task Force is on the requirement for functional parity

between IPv4 and IPv6, with an emphasis, as always, on security implementations. In other

words, the same functionality available within an IPv4 environment must, at a minimum, be

available in an IPv6 environment. This minimum standard is established in order to create a

 Department of Veterans Affairs

IPv6 Enablement Support Services

IPv6 Applications Best Practices 6/29/2012 Page 7 of 68

baseline threshold of requirements. However, industry best practices recommend that the actual

designed-in benefits of applying IPv6, regarding different software design architectures, should

be investigated by senior software developers and enterprise architects. IPv6, as designed, brings

multiple lessons learned from the deployment of IPv4, and so through a thorough analysis of

what IPv6 enables far beyond IPv4, software developers should move beyond simple IPv4 parity

at their earliest opportunity.

Developers of new applications must recognize the reality of the transition period and should

build software that is tolerant and well-behaved in a heterogeneous IPv4/IPv6 environment.

Although exploiting IPv6 features is an important catalyst for driving the move to IPv6, failing to

support the entire community during the transition period with incompatible IPv4 solutions shall

be avoided (hence the initial approach to produce PI code).

The VA IPv6 Applications Testing Best Practices document provides VA software development

teams with the best practices and associative tools to support the applications’ transition from

IPv4 to IPv6. This best practices document, as a companion piece to the document titled, “IPv6

Applications Best Practices” dated February 28
th

, 2012, includes:

• IPv6 Application Development Best Practices Synopsis: A condensed guide derived from

the companion document intended for VA software quality assurance and software testers

to be utilized when planning testing for upgrades/modifications to existing applications or

new systems to ensure IPv6 capable applications are effectively tested for acceptance and

deployment.

• IPv6 Application Testing Best Practices: Specific methods and tools that are available to

VA to ensure applications are tested for IPv6 operations.

2.1 Scope

A best practice is a technique or methodology that, through experience and research, has proven

to reliably lead to a desired result. A commitment to using the best practices in any field is a

commitment to using all the knowledge and technology at one's disposal to ensure success. The

term is used frequently in the fields of health care, government administration, the education

system, project management, hardware and software product development, and elsewhere.

In software development, a best practice is a well-defined method that contributes to a successful

step in product development. Throughout the software industry, several best practices are widely

followed. Some of the more commonly used are: an iterative development process, software

quality assurance, requirement management, and change control.

A best practice tends to spread throughout a field or industry after a success has been

demonstrated. However, it is often noted that demonstrated best practices can be slow to spread,

even within an organization. According to the American Productivity & Quality Center, the three

main barriers to adoption of a best practice are a lack of knowledge about current best practices,

a lack of motivation to make changes involved in their adoption, and a lack of knowledge and

skills required to do so.

 Department of Veterans Affairs

IPv6 Enablement Support Services

IPv6 Applications Best Practices 6/29/2012 Page 8 of 68

2.2 Environment, Organization and Methodologies

The Department of Veterans Affairs’ Systems Development Life Cycle (SDLC) is the overall

process of developing, implementing, and retiring information systems through a multistep

process from concept definition, concept development, system design and prototype, system

development and testing, system deployment, and system operation and disposal.

The SDLC is a collaborative process across many disciplines and VA organizational entities

including the Office of Enterprise Systems Engineering (ESE), Field Operations (FO), National

Data Center Program (NDCP), Austin Information Technology Center (AITC), Product

Development, Office of Information Protection and Risk Management (IPRM) and Field

Security Operations, Veterans Health Administration (VHA), Veterans Benefits Administration

(VBA), and National Cemetery Administration (NCA).

The SDLC may follow an approved model, based on the original decisions of key stakeholders

and governing criteria based on size, complexity, and mission criticality of the resulting

information system. Examples of such models are Waterfall, Spiral, Iterative, and Agile. Within

each of these models, the following functional activities occur, with corresponding organization

responsibilities.

Deployment Design is the starting phase of the overall solution lifecycle where architectural

design and implementation specifications are developed and tested. The preparation of plans and

specifications necessary to implement the solution are part of the deployment design stage.

Developed solutions are implementation-ready for the production environment at the end of the

deployment design stage.

ESE and Product Development (as applicable based on primary project ownership) are

responsible for deployment design and complete release package specifications, including user

and technical documentation, procurement, shipping and training plans. Architectural design

artifacts, release package specifics and testing plans and results are vetted with FO and NDCP.

Implementation equates to the installation and activation of newly designed or changed

hardware, software, process, etc. into the production environment. This must be planned, scoped

and resourced. During the implementation phase of the solution life cycle the organizations

responsible work from specifications and plans created during deployment design for deploying

the solution into the production environment.

FO, NDCP, and/or AITC are responsible for installation and the installation schedule, selection

and validation of shipping locations/schedule, site readiness to support installation, acceptance of

equipment using Asset Inventory processes, coordination and actual training working with ESE

and Product Development (if applicable), communication and vetting changes through the field

and FO management. ESE is responsible for Release Management, including certification of

production readiness. ESE must validate that the project owner has provided an adequate release

package. ESE also validates the release baseline. The ‘release package’ is the subset of

documents, as defined by the OIT Testing and Release Checklist provided to the field along with

the product. The complete Release Package will be made available to FO at deployment The

‘release baseline’ is defined as the product build (software and hardware specifications) along

with the body of documents that support testing, install, operations, training and support of the

 Department of Veterans Affairs

IPv6 Enablement Support Services

IPv6 Applications Best Practices 6/29/2012 Page 9 of 68

product. Projects will determine early in the development cycle the project’s ‘release baseline’.

The ‘release baseline’ components enter change control once the project is approved for

deployment.

Within this methodology and organizational responsibilities, policies and procedures must be

drafted, and training must occur on these policies and procedures, which facilitate the

organizational community base of enterprise architects, systems engineers, security engineers,

software developers, quality assurance personnel, test personnel and deployment personnel

(including service desk and security operations center personnel).

2.3 Assumptions and Constraints

The assumption of this best practices document is that the software development practices within

the VA are mature, and the personnel engaged in the SDLC are appropriately trained in the

practices. This document is intended for trained and experienced personnel from the VA

community to apply within their respective roles and responsibilities. This includes, but is not

limited to, the security engineering practices required to produce the applications in accordance

with the VA’s criteria. IPv6 Security best practices are outside the scope of this best practice

document.

Constraints include, but are not limited to the IPv6 criteria set by the Internet Engineering Task

Force (IETF), the Federal government standards, and the VA policies.

3 GOTS Application Development Best Practices (Synopsis)

This is a guide for VA software quality assurance and test teams that can be utilized when

conducting SQA and developing the test plans for new developments or upgrades/modifications

to existing applications or systems to ensure IPv6 is effectively implemented in the applications

as recommended by the companion document.

3.1 Technical impact of IPv6 on existing applications

The largest technical impact of IPv6 on existing applications results from the expansion of

address space to 128 bits. This expansion will require updates to applications that currently

display, store and access (communicate) addresses in “hard coded – raw binary” format rather

than symbolic/logical format. Applications will also have to incorporate approaches for

resolving addresses in a dual (IPv4/IPv6) network environment.

At a generic level (as defined in “Programming Guidelines on Transition to IPv6”, Tomas P. de

Miguel and Eva M. Castro, January 2003) the categories of technical impact can be defined as:

 Network information storage/display

 Resolution and address issues

 Communication APIs (raw socket code, etc.)

3.1.1 Network information storage/display

Network information storage is concerned with internal representations of network addresses and

the inability of existing IPv4 applications to properly handle the 128 bit addressing required for

 Department of Veterans Affairs

IPv6 Enablement Support Services

IPv6 Applications Best Practices 6/29/2012 Page 10 of 68

IPv6. This includes areas such as database fields where IP addresses are used/stored, internal

memory structures (i.e., device drivers), and in general wherever raw IP addresses are currently

managed. Applications that configure and manage devices where IP addresses are directly used

will be impacted. Collaborative or restricted access applications that register remote nodes by

storing IP addresses as registry keys, and using the IP address as an identification discriminator

for allowing connections from remote nodes to a session or service, will also be impacted. The

ability to properly represent network information will impact applications that display such

information. Programming upgrades are needed in the data storage fields, data displays, and

menu options used for controlling IP addresses (e.g., Network Management Software) or

displaying IP addresses as opposed to logical names.

3.1.2 Resolution and address issues

Properly managing the Domain Naming System (DNS) is a critical element of the overall IPv6

transition. Existing IPv4 applications requesting network address resolution expect to receive

IPv4 addresses. Assuming the name resolver in the operating system is IPv6 capable and can

accept and order DNS records from a name server that contains IPv6 addresses, the typical

system call used by an IPv4 application will not work properly and will return an error.

Therefore, the ability to properly resolve host names and reverse-lookups in the heterogeneous

environment of mixed IPv4/IPv6 networks and nodes is key to continuity during the transition.

However, as applications are upgraded, the greater use of modern, structured, programming

methodologies will alleviate the impact of future modifications to standards for IP addressing

and naming services. Figure 1 is an example of how applications resolve host names.

Figure 1: Name Resolution

From the best practices perspective, applications should use names instead of addresses for hosts.

Names are easier to remember and remain the same, but numeric addresses could change more

frequently. From an application’s point of view the name resolution is a system-independent

process. Applications call functions in a system library known as the resolver, typically

gethostbyname and gethostbyaddr, which are linked into the application when the application is

built, see Figure 1.

The resolver code is the burden of making the resolution dependent of the system configuration.

Significantly appropriate, there are two new functions to make name and address conversions

 Department of Veterans Affairs

IPv6 Enablement Support Services

IPv6 Applications Best Practices 6/29/2012 Page 11 of 68

protocol independent, getaddrinfo and getnameinfo. Besides, the use of these new ones instead of

gethostbyname and gethostbyaddr is recommended because the latter are not normally reentrant

and could provoke problems in threaded applications. The getaddrinfo function returns a linked

list of addrinfo structures which contains information requested for a specific set of hostname,

service and additional information stored in an addrinfo structure. The figure below gives an

accurate comparison. Some additional notes are that getaddrinfo dynamically allocates memory

unlike its predecessor functions, and the corresponding freeaddrinfo() function is called to free

the buffers that are allocated by getaddrinfo().

Figure 2: Protocol Specific compared to Protocol Independent – IP versus Name

3.1.3 Communication APIs (raw socket code, etc.)

Any application that currently communicates with raw sockets will require modification. It is

anticipated that many older communications libraries will be significantly impacted.

Communication APIs will need to be individually assessed. For some older applications, there

could be considerable work in just updating the compilers and development environment in order

to utilize the newer calls. In upgrading to IPv6, applications need to use more generic calls,

which support both IPv4 and IPv6 information. Figure 3 below illustrates a simplified

architecture situation where the application ideally remains independent of IPv4/IPv6 address

structure differences through the use of a communications library.

Figure 3: Using a Communications Library to Separate Applications from the IP Address

Structure

 Department of Veterans Affairs

IPv6 Enablement Support Services

IPv6 Applications Best Practices 6/29/2012 Page 12 of 68

Older software libraries should be considered carefully during the assessment process in order to

decide whether a co-existence approach is more appropriate than the level of resource investment

that would be required to upgrade the code base.

3.1.4 Socket Address Structures Specifics

Functions provided by socket API use the socket address structures to determine the

communication service access point. Since different protocols can handle socket functions, a

generic socket address structure is used as an argument of these functions for any of the

supported communication protocol families, sockaddr.

Struct sockaddr {

 sa_family_t sa_family; /* Address family */

 char sa_data[14]; /* protocol-specific address

*/

};

Although socket functions handle the generic socket address structures, developers must fill the

adequate socket address structure according to the communication protocol they are using to

establish the socket. In particular, the IPv4 sockets use the following structure, sockaddr_in:

typedef uint32_t in_addr_t;

struct in_addr {

 in_addr_t s_addr; /* IPv4 address */

};

struct sockaddr_in {

 sa_family_t sin_family; /* AF_INET */

 in_port_t sin_port; /* Port number. */

 struct in_addr sin_addr; /* Internet address. */

 /* Pad to size of `struct sockaddr’. */

 unsigned char sin_zero[sizeof (struct sockaddr) –

 sizeof (sa_family_t) –

 sizeof (in_port_t) –

 sizeof (struct in_addr)];

};

And the IPv6 sockets use the following structure, sockaddr_in6, with a new address family

AF_INET6:

struct in6_addr {

 union {

 uint8_t u6_addr8[16];

 uint16_t u6_addr16[8];

 uint32_t u6_addr32[4];

 } in6_u;

 Department of Veterans Affairs

IPv6 Enablement Support Services

IPv6 Applications Best Practices 6/29/2012 Page 13 of 68

 #define s6_addr in6_u.u6_addr8

 #define s6_addr16 in6_u.u6_addr16

 #define s6_addr32 in6_u.u6_addr32

};

struct sockaddr_in6 {

 sa_family_t sin6_family; /* AF_INET6 */

 in_port_t sin6_port; /* Transport layer port # */

 uint32_t sin6_flowinfo; /* IPv6 flow information */

 struct in6_addr sin6_addr; /* IPv6 address */

 uint32_t sin6_scope_id; /* IPv6 scope-id */

};

The sockaddr_in or sockaddr_in6 structures are utilized when using IPv4 or IPv6, respectively.

Existing applications are written assuming IPv4, using the sockaddr_in structure. They can be

easily ported changing this structure by sockaddr_in6.

However, when writing portable code, it is preferable to eliminate protocol version dependencies

from source code. There is a new data structure, sockaddr_storage, large enough to store all

supported protocol-specific address structures and adequately aligned to be cast to the a specific

address structure.

/* Structure large enough to hold any socket address (with the historical exception of

AF_UNIX). 128 bytes reserved. */

#if ULONG_MAX > 0xffffffff

define __ss_aligntype __uint64_t

#else

define __ss_aligntype __uint32_t

#endif

#define _SS_SIZE 128

#define _SS_PADSIZE (_SS_SIZE – (2 * sizeof (__ss_aligntype)))

struct sockaddr_storage

{

 sa_family_t ss_family; /* Address family */

 __ss_aligntype __ss_align; /* Force desired alignment. */

 char __ss_padding[_SS_PADSIZE];

};

The use of sockaddr_in or sockaddr_in6 structures along with the new data structure,

sockaddr_storage, will allow software developers to specify the required IP address. However,

this is to be used as a transition mechanism to ultimately support the use of IPv6 benefits over

the legacy IPv4 employment. Software Requirements Specifications written to establish sole

IPv6 connectivity must make the above changes, but must be approved given the minimum

 Department of Veterans Affairs

IPv6 Enablement Support Services

IPv6 Applications Best Practices 6/29/2012 Page 14 of 68

preferred approach to employ PI practices and make calls for FQDNs to establish host to host

connections. The figure below provides a side by side representation for the storage of IP

addresses, should they be absolutely required.

Figure 4: Protocol Specific compared to Protocol Independent - Storage

3.2 Co-existence methodologies/mechanisms

An unidentified (yet assumed with a firm certainty) set of legacy applications will not or should

not necessarily be upgraded to native IPv6. This is a common risk element identified in every

industry best practice risk register. In these cases, it is important to understand that co-existence

approaches exist that will still allow these applications interoperability and compatibility with

IPv6 networks and systems, but are not mandated. The idea behind co-existence is that the

transition from IPv4 to IPv6 will take time, likely several years. The IPv6 industry agrees that

some legacy systems will remain IPv4 indefinitely due to mission criticality, code base reverse

engineering complexities, and legacy platform technical incompatibilities, to name the primary

rationales for not transitioning.

Co-existence mechanisms can be based on network or software approaches, or a combination of

both. This is an area which is a paradigm shift for the future of software design and application

development, and requires education at various levels of engineering skill sets. The co-existence

mechanism we will be testing to in this document, is the Dual stack approaches (network and

software system). Use of translation plug-ins / software proxies as a transition approach is not

within the scope of this document due to the severely increased risks in performance and

interoperability by their use.

Each of the co-existence mechanisms imposes system constraints and limitations, which must be

assessed in the context of the overall proposed deployment/transition approach. Some of these

mechanisms will be driven by the applications themselves as well as the time frame for

 Department of Veterans Affairs

IPv6 Enablement Support Services

IPv6 Applications Best Practices 6/29/2012 Page 15 of 68

deploying capabilities into operations. The industry best practice is to commence designing and

writing protocol independent code to support a dual stack environment at the earliest

opportunity, and then during tech refresh cycles in the software development life cycle evaluate

the opportunity to shift the legacy code to a protocol independent version.

3.2.1 Dual stack approaches for applications

For network items such as routers, the dual stack approach entails (at a very simplified level)

turning on a parallel capability which can deal with either IPv4 or IPv6 packets or a combination

of the two. At a high abstraction level, the dual stack model can also be applied to software

applications. However, there are some details that must be understood.

Note that dual stack capability for applications should not be confused with dual stack

availability in the operating system. Even when an application is dual stack enabled, it will still

require IPv6 support from the underlying operating system in order to interact with other devices

and applications on the network.

The table below illustrates a subset of the IPv4/IPv6 dual stack combinations. It describes

servers and client components that are either dual stack enabled (i.e., understand and

communicate both IPv4 and IPv6 protocols) or support only a single protocol. The table also

includes certain configurations where communication is not possible (N/P).

The highlighted column in the following table and Figure 5 below illustrate an IPv4 server in an

IPv4 only application node. If both IPv4 and IPv6 network interfaces are available but there are

only IPv4 applications, IPv6 will not be used.

Table 1: IPv4/ IPv6 Dual Stack Combinations

IPv4/IPv6 Dual Stack Combinations

 IPv4 Server IPv6 Server

 IPv4 Only Dual Stack IPv6 Only Dual Stack

IPv4 Client IPv4 Node IPv4 IPv4 N/P IPv4

Dual Stack IPv4 IPv4 N/P IPv4

IPv6 Client IPv6 Node N/P N/P IPv6 IPv6

Dual Stack IPv4 IPv4 IPv6 IPv6

 Department of Veterans Affairs

IPv6 Enablement Support Services

IPv6 Applications Best Practices 6/29/2012 Page 16 of 68

IPv4 Client

IPv4

Socket API

TCP/UDP

a.b.c.d

IPv4 Client

Socket API

TCP/UDP

IPv4

a.b.c.d

IPv6

IPv4 Client

Socket API

TCP/UDP

IPv4

a.b.c.d

IPv6

::FFFF:a.b.c.d

IPv4 Header

Payload

IPv4 Server

IPv4

Socket API

TCP/UDP

a.b.c.d

Figure 5: IPv4 Clients and IPv4 Server in an IPv4 Only Node

Again, note that dual stack capability for applications should not be confused with dual stack

availability in the operating system.

The highlighted column in the following table and Figure 6 below illustrate an IPv6 server in an

IPv6 only application node.

Table 2: Dual Stack Combinations

IPv4/IPv6 Dual Stack Combinations

 IPv4 Server IPv6 Server

 IPv4 Only Dual Stack IPv6 Only Dual Stack

IPv4 Client IPv4 Node IPv4 IPv4 N/P IPv4

Dual Stack IPv4 IPv4 N/P IPv4

IPv6 Client IPv6 Node N/P N/P IPv6 IPv6

Dual Stack IPv4 IPv4 IPv6 IPv6

 Department of Veterans Affairs

IPv6 Enablement Support Services

IPv6 Applications Best Practices 6/29/2012 Page 17 of 68

IPv4 Client

IPv4

TCP/UDP

IPv6 Client

TCP/UDP

IPv6

x:x:x:x:x:x:x:x

IPv4 Client

TCP/UDP

IPv4 IPv6

IPv6 Header

Payload

IPv6 Server

IPv6

TCP/UDP

x:x:x:x:x:x:x:x

IPv4 Client

TCP/UDP

IPv4 IPv6

x:x:x:x:x:x:x:x

Figure 6: Mixed Clients and IPv6 Server in an IPv6 Only Node

The application transport module is directly related to the communication establishment and the

information transmission. However, this application could have dependencies on other modules,

which may have their own IP address dependencies, so they are IP version dependent. As stated

previously, some applications require an IP address as an argument to establish a new connection

to this address. As an example using the client/server model, the client needs to know the IP

address or the hostname where the server is running.

The use of Fully Qualified Domain Name (FQDN) instead of IP address is preferable since

nodes can change their addresses and this process should be transparent to applications.

Applications can store and use FQDN, delegating the resolution of the IP addresses to the name

resolution system, which will return the associated IP address at the moment of the query.

3.3 Internet Engineering Task Force (IETF) Application Support Recommendations

As described in RFC 6434-“IPv6 Node Requirements”, IPv6 will be deployed in a wide range of

devices and situations. Specifying the requirements for IPv6 nodes allows IPv6 to function well

and interoperate in a large number of situations and deployments. Applications play a

tremendous role in defining the network topology, since technology is intended to enhance

mission effectiveness and productivity. The following recommendations have been included in

this best practice document to certain degrees of fidelity, and each quoted RFC forms the final

basis for any future Software Requirements Specification (SRS). This includes Application

Programmer Interfaces (APIs).

3.3.1 Application Programming Interfaces (APIs)

 Department of Veterans Affairs

IPv6 Enablement Support Services

IPv6 Applications Best Practices 6/29/2012 Page 18 of 68

There are a number of IPv6-related APIs. This document does not mandate the use of any,

because the choice of API does not directly relate to on-the-wire behavior of protocols.

Implementers, however, would be advised to consider providing a common API or reviewing

existing APIs for the type of functionality they provide to applications.

“Basic Socket Interface Extensions for IPv6” [RFC3493] provides IPv6 functionality used by

typical applications. Implementers should note that RFC3493 has been picked up and further

standardized by the Portable Operating System Interface (POSIX) [POSIX].

The above API is the focus for the foundational code to produce a protocol independent

application code base. Once application developers more fully understand IPv6, and enhanced

requirements can be delineated, the below APIs would be included (but are out of scope of this

document).

 “Advanced Sockets Application Program Interface (API) for IPv6” [RFC3542] provides access

to advanced IPv6 features needed by diagnostic and other more specialized applications.

“IPv6 Socket API for Source Address Selection” [RFC5014] provides facilities that allow an

application to override the default Source Address Selection rules of [RFC3484].

“Socket Interface Extensions for Multicast Source Filters” [RFC3678] provides support for

expressing source filters on multicast group memberships.

“Extension to Sockets API for Mobile IPv6” [RFC4584] provides application support for

accessing and enabling Mobile IPv6 [RFC6275] features.

4 Application Testing Best Practices supporting IPv6

Software testing is done every day within the Software Development Life Cycle (SDLC) adopted

by the respective organization. The periodicity of the iterations of code, debug, test, deploy is

dependent on that SDLC, whether it be waterfall or agile, and determined far in advance of the

establishment of the requirements. The purpose of this document is to not “re-invent the wheel”

and depict how this testing is applicable to this or that SDLC. Rather, this document is intended

to establish a testing paradigm that fits well within any SDLC chosen, based on the coding best

practices detailed in the companion document
1
.

All applications to be developed, being developed or currently deployed (i.e., still operational,

not retired) within the VA enterprise must be considered as candidates for establishing or

refining the code in order for the code to support the stated PI requirements. Although this is

stated in the companion document “IPv6 Applications Best Practices”, this is worthy of re-

iteration here. Such applications as stated above must be identified, categorized and prioritized

within the VA engineering and programmatic administration. Categories are as follows:

 A new system that has not completed the requirements gate review

1
 “IPv6 Applications Best Practices” dated February 28

th
, 2012; Deliverable 0005AA

 Department of Veterans Affairs

IPv6 Enablement Support Services

IPv6 Applications Best Practices 6/29/2012 Page 19 of 68

 A new system, developed and under test, that has not yet been deployed

 A system already deployed that can be upgraded to IPv6

 A system that should be upgraded to IPv6

 A system considered to be legacy and therefore, has no plans for upgrading to IPv6

For the sake of scoping, this document is intended to test any application that has gone through

the process of integrating the PI standard, regardless of its lifecycle stage (e.g. new or revised).

4.1 Testing Process

The process outlined below is a “best practice” regarding the insertion of the PI standards into

the SDLC. This is not intended to suggest alteration to the existing test strategy outlined in

Appendix D (VA Testing Service Testing Guide) nor make changes to the VA Software Quality

Assurance/Test process. Based on review of both VA documents, the essential components are

offered here which should be inserted into the already in place and mature process. The current

tabs contained in the VA SQA/Test Review Checklist can be easily modified to incorporate the

PI standard. Appendix E provides an example of testing documentation for a VistA module that

would require modification should that module be selected to be refreshed to reflect the PI

standard.

At the least, the following is suggested:

 Confirm Software Requirements Specification

o Defined PI coding standards

o Establish platform and network operating environment IPv6 standards

 Confirm test environment supports development and production environment

 Establish and Execute the Test and Evaluation Master Plan (which elements contain)

o Provide SQA personnel with accurate and tested code examples to compare

between them and the application under test

o Create Acceptance Criteria (SQA and Functional Test) traceable to requirements

o SQA conduct code review (Pass/Fail criteria)

o Create Test Case(s) traceable to acceptance criteria

o Configure test environment per test case

o Schedule and conduct tests

o Review results (Pass/Fail)

4.1.1 Requirements

In any SDLC, the requirements component is essential. A System Requirements Review (SRR)

is a normal gate with which the process ensures that threshold and objective requirements, both

functional and standards compliance based, must be documented and established for traceability.

Artifacts associated with a SRR include:

 Requirements Traceability Matrix (RTM)

 List of discrepancies/questions to address at the SRR

 Draft Functional Baseline

 Draft System Specification and any initial draft Item Performance Specifications

 Trade studies

 Risk assessments

 Department of Veterans Affairs

IPv6 Enablement Support Services

IPv6 Applications Best Practices 6/29/2012 Page 20 of 68

This document’s purpose is to provide the best practices regarding testing a PI application so that

the application under test can be verified that it has incorporated the software coding standard

provided in the companion document, and as mandated to be included as a technical standard

within the system’s System Requirement Specification (SRS). The following provides the initial

RTM mapping to these standards.

The IPv6 Enablement document titled “IPv6 & USGv6 Compliance Test Capability”, dated

February 23, 2012 establishes applications as the 6
th

 element to be created as an enterprise entity

with associated standards and subsequent testing requirements. The rationale for this specificity

is that there are legacy applications existing within the VA enterprise today that cannot support

the IPv6 environment.

Table 3: “IPv6 & USGv6 Compliance Test Capability” Reference

The broad requirements called out from section 9.5 above lack the specificity needed to

sufficiently create the test cases and criteria. The VA employs a standard template for a Software

Requirements Specification (SRS), from which all software testers and SQA base their process

actions. The code specifications may be further refined as follows.

When porting to IPv6, most of changes will be made in the application transport module, which

establishes communications to remote nodes. The developer, either in creating a new application,

or revising a legacy IPv4 specific application, must separate the transport module from the rest of

application functional modules. This separation makes the application independent on the

network system used. Then, if the network protocol is changed, only the transport module should

be modified. The transport module should provide the communication channel abstraction with

basic channel operations and generic data structures to represent the addresses. These

abstractions could be instantiated as different implementations depending on the network

protocol available at the time required. The application should deal with this generic

communication channel interface without knowing the network protocol used (and with the

current advent of operating systems supporting dual stack operations, the default is the

establishment of IPv6 first, followed, if IPv6 is not available, per the OS’ timing standards to the

establishment of the IPv4 connection. The crux of the design implementation is allowing the OS

9 VA IPv6 Profile Development Classes

9.5 Applications / SW

Not covered within the USGv6 definitions, the VA must also require that software

being procured conform to IPv6-specific requirements. In the most general sense,

all software should be capable of functioning in both Dual-Stack and IPv6-only

modes of operation.

Important considerations for IPv6-enabled software are:

• The software application can function the exact same way in an IPv6-only

environment, and

• The software coding for all network interfaces is in compliance with numerous

IEEE and IETF standards supporting IPv6 socket implementation.

 Department of Veterans Affairs

IPv6 Enablement Support Services

IPv6 Applications Best Practices 6/29/2012 Page 21 of 68

to perform per design, and then afford the application to make the required connections to

another host. Using this design, the network protocol employed is irrelevant to the application.

 Once the transport module has been designed, there are some implementation details related to

the type of the nodes which will run the application: IPv4-only nodes, IPv6-only nodes or both,

dual stack. We are focused on developing (and testing) applications that may operate effectively

on any of these installations, since the application will establish host and socket connectivity by

employing Fully Qualified Domain Names (FQDN) contained within the Domain Name Server

(DNS), and therefore avoid the requirement to establish network specific connections.

Section 3 and Appendix C of this document provides the specific details to be assessed by SQA

during their source code reviews, and by the testing team in developing the test cases to verify

the functional capability of the application once executed.

4.1.2 Software Quality Assurance

SQA reviews the source code once the developer has completed the assigned effort and has

successfully compiled the code into an executable (in this case). The source code, in accordance

with best practices, is supposed to be documented in a similar fashion as the example in

Appendix C, although one could state the code in Appendix C is documented more than

normally with specific information regarding the PI elements in order to support code and

document comparison.

SQA relies on their knowledge and experience, the SRS, the VA policies, and, when available,

validated code examples, in order to ensure the developer has produced the right application, the

right way. Due to the varieties of SDLC, the Software Lines of Code (SLOC) required to create

functions and calls can be constrained by the design, and the timing. However, due to the

relatively low SLOC, and the straightforward one for one transition of code, this SQA effort may

only take of few moments of time, given the size of the transport module. Once approved, the

executable is transitioned and installed in the test environment.

4.2 Test Environment

The test environment is critical to the understanding of the coded application’s behavior once the

developer has successfully coded the application to be protocol-independent.

4.2.1 USGv6 and VA Compliance

The test environment platform, in order to support IPv6 testing, must meet the criteria

established by the VA for, at least, production devices employed in supporting the business

functions supported by the corresponding application. The minimum criteria regarding RFC

compliance for the platforms engaged in establishment of the application test environment may

be found in section 6.11 of NIST SP 500-267 Vol. 1 (Pages 35-37). The essence of the testing is

to confirm that the developers successfully compiled code in accordance with the IPv6

Enablement document titled “IPv6 Applications Best Practices” dated February 28
th

, 2012. In

order to test this code to meet minimum acceptable criteria, the platforms must be compliant with

the underlying RFCs.

 Department of Veterans Affairs

IPv6 Enablement Support Services

IPv6 Applications Best Practices 6/29/2012 Page 22 of 68

The IPv6 Enablement document titled “IPv6 & USGv6 Compliance Test Capability” dated

February 23
rd

, 2012 in section 6 details the test classes within which this test environment

construct must perform. The class to be used for this testing is “functional”, depicted in that

document’s figure 16. Section 6.1.7 of that document refers, specifically addressing application

testing, however lacks the specificity that this document provides. In section 7 of same

document, the definition of the test environment is specified. The application test environment to

be established per this document is based on objectives 3 and 4, in which PI code is best suited to

optimize the transition to a homogeneous native IPv6 environment. The VA’s strategic intentions

is depicted in Figure 7.

Figure 7: VA IPv6 Strategic Objective

4.2.2 Code Base

The knowledge of the code base, since this is the foundation of the application under test, is a

pre-requisite for test planning. Given the nuances of the different bases, in order to establish the

credibility of the code with respect to IPv6 and corresponding APIs, the SQA and test planners

need to understand the circumstances with the potential for legacy applications to effectively

create appropriate test cases. This will be realized fully during the revision of legacy applications

employing various code bases. However, in the requirements definition for new applications, the

versatility of the code base regarding IPv6 must be taken into consideration at the time of

requirements review.

The IETF has created several RFCs to give guidance on C-language IPv6 socket programming

which are presented in section 3.3.2 and a complete documented example in Appendix C.

However, the following is provided as precise examples of what is available today with the

existing popular code bases.

JAVA

Java has supported IPv6 for many years. IPv6 support was added in J2SDK/JRE 1.4. Java

supports address types Inet4Address and Inet6Address and address-family independent sockets.

 Department of Veterans Affairs

IPv6 Enablement Support Services

IPv6 Applications Best Practices 6/29/2012 Page 23 of 68

Significantly, for developers, with Java, the IPv6 stack is preferred by default. Unfortunately, at

this time Java prefers IPv4 addresses returned by DNS.

The following two settings control how Java uses either IP version:

Java.net.preferIPv4Stack= < true|false > # false by default

java.net.preferIPv6Addresses= < true|false > # false by default

Therefore, these lines should be added the java options.

-Djava.net.preferIPv4Stack=false

-Djava.net.preferIPv6Addresses=true

PYTHON

Python has good IPv6 support in Python versions 2.3 and 2.6, and the version 2.7.1 has a few

bug fixes regarding IPv6. Python has many protocol independent functions such as:

socket.AF_INET, socket.AF_INET6, socket.getaddrinfo, socket.getnameinfo,

socket.socket([family[, type[, proto]]]), and socket.inet_pton, socket.inet_ntop. There is a simple

way to check the version of Python for IPv6 capabilities.

Enter the following lines:

python

>>> import socket

>>> socket.has_ipv6

True

.NET

Microsoft has supported IPv6 for over 10 years. They are one of the leaders as a vendor in

providing APIs for protocol independent network applications.

Examples of what they have instituted:

System.Net, RPC, wininet, sockets, DNS, HTTP, XML Web Services

Additionally, Developer PSS support is available. Most managed applications within the

Microsoft inventory (including ASP.NET, XML Web services) have been designed to work over

IPv6. Enable IPv6 on the platform with <netsh int ipv6 install> to confirm. Server version 2003

and later, and client XP and later have increasing mature IPv6 capability. The optimum platforms

today to port code to would be Server 2008 (Release2) and the Win7 client. An example of the

representative PI code is contained in Appendix C. SQA personnel may use this as a benchmark

when conducting a code review (since the code is validated by Microsoft, and used to test the

efficacy of their IPv6 code checker Checkv4.exe, available in MSDN).

PERL

Perl CORE has no IPv6 support. Developers must use either Socket6 and IO::Socket::INET6 or

Socket and IO::Socket::INET. No single API will work for IPv4-only, dual-protocol, and IPv6-

only and this makes it difficult to produce PI code. Therefore, developers must re-write the code

to establish IPv6 connectivity, let alone PI compliance.

Determine if the current PERL version has IPv6 support using these following commands:

$ perl –Msocket6 –e1

$ perl –MIO::Socket::INET6 –e1

 Department of Veterans Affairs

IPv6 Enablement Support Services

IPv6 Applications Best Practices 6/29/2012 Page 24 of 68

Since this is a best practice document, the respective code bases above are provided as

considerations for the SQA and test team, yet are out of scope for this test document regarding

these specific code bases for testing. The overarching capability, with the most documented code

base (IETF references pertain), is C. Experienced developers, and experienced SQA and

software test engineers, can easily extrapolate the calls and threads based on these guidelines

employing the respective RFCs and C code examples.

4.2.3 Test Architecture

Figure 8 provides a representation of the application sequence in a dual stack environment.

Figure 8: Typical Host Platform Application Architecture

Given that the primary issue involved in creating the test architecture is to establish an emulation

of the production environment, we must at least establish two hosts both containing the

application under test between which they may establish communications across the network.

Given that the test environment also must be employing IPv4 and IPv6, and that since the PI

standard requires the use of the DNS, the architecture also requires DHCP/DHCPv6 and DNS

(capable of A and AAAA records). Figure 9 provides an example of the architecture.

Host 1

Host 2

DHCP

DNS

Figure 9: Application Test Environment

The test environment is configured to provide stateful IPv4 and IPv6 addresses assigned via the

DHCP, and the DNS is configured with the appropriate VA DNS naming conventions associated

for the corresponding records and IP addresses. The addresses available must be in accordance

 Department of Veterans Affairs

IPv6 Enablement Support Services

IPv6 Applications Best Practices 6/29/2012 Page 25 of 68

with the VA IPv6 Addressing Test Allocation policy provided within the IPv6 Addressing plan.

As stated earlier, all components of the test environment must be compliant with the VA IPv6

Compliance policy. Since the platform is for testing the application, the recommendation is to

establish the entire platform employing Microsoft products for homogeneity and thus reduction

of risk. Wireshark is operating at the time of test on one device on network for PCAP and test

point analysis.

Prior to start of each test case, the test devices are powered up and operating properly with all

syslogs and appropriate functions operating per established standards, appropriate network

connectivity is established per RFC criteria, VA standards, and test case requirements, and the

PCAP application is verified to be working in accordance with vendor specs, VA standards, and

configured to support the test case per requirements.

4.3 Test Cases and Criteria

The test acceptance criteria and thus the test case must be built from the requirements. The

functional acceptance criteria is that the application operates in either an IPv4 or IPv6 network

environment, employing FQDNs without relying on specific IP addresses. Given that in a dual

stack configuration, the host OSs choose IPv6 first, and then shift to IPv4 should there be no

IPv6 enabled on the network, this provides the basis for two test cases. One is to be run with both

IPv4 and IPv6 enabled on all test devices, and one is to be run with only IPv4 is enabled.

Table 4: Test Case One

Test Case One
IPv6 (in Dual Stack with IPv4

enabled)

Step Performance Steps Expected Result P/F/Partial/ Notes:

1.
Begin packet capture on

the PCAP device.
Normal operating condition Not Test Criteria

Required for test

documentation and test

criteria status

2.
Open syslogs on all

devices on network
Normal operating condition Not Test Criteria

Required for test

documentation and test

criteria status

3.
Execute application

under test

Application should commence start up

in stack per runtime.

Monitor syslogs, CPU

cycles and RAM usage

on application host

platform for abnormal

operation

4.
Observe and capture

PCAP traffic

Calls should ,in sequence, be to the

DNS and then to the other host device

Given the test

environment is properly

configured

5.

Observe and capture

syslog reports on both

host platforms

Application communication connection

between devices is established

6.

Within the application

under test, execute a

command that requires

data transfer between

hosts.

Data transfer occurs between hosts

PCAP confirms packet

traversal in timing

coincident to command

function execution.

 Department of Veterans Affairs

IPv6 Enablement Support Services

IPv6 Applications Best Practices 6/29/2012 Page 26 of 68

Test case one is in a dual stack mode with both IPv6 and IPv4 enabled. Test case two is intended

to test the applications ability to operate in an IPv4 enabled network. Due to the OS functionality

of the hosts, this will also validate the applications capability to interface with the host OS due.

Test environment configuration is identical to test one’s with the exception that DHCPv6 is not

configures to provide IPv6 addressing, and the DNS does not have the DNS name records

associated with IPv6 addresses.

Table 5: Test Case Two

7. Exit application Wait for full memory to be purged Observe syslogs

8. Document test
All logs, PCAP logs,

and screen captures

Test Case Two
IPv4 (in Dual Stack with IPv6

disabled on DHCP and DNS)

Step Performance Steps Expected Result P/F/Partial/ Notes:

1.
Begin packet capture on

the PCAP device.
Normal operating condition Not Test Criteria

Required for test

documentation and test

criteria status

2.
Open syslogs on all

devices on network
Normal operating condition Not Test Criteria

Required for test

documentation and test

criteria status

3.
Execute application

under test

Application should commence start up

in stack per runtime.

Monitor syslogs, CPU

cycles and RAM usage

on application host

platform for abnormal

operation

4.
Observe and capture

PCAP traffic

Calls should ,in sequence, be to the

DNS and then to the other host device

Given the test

environment is properly

configured

5.

Observe and capture

syslog reports on both

host platforms

Application communication connection

between devices is established

6.

Within the application

under test, execute a

command that requires

data transfer between

hosts.

Data transfer occurs between hosts

PCAP confirms packet

traversal in timing

coincident to command

function execution.

7. Exit application Wait for full memory to be purged Observe syslogs

8. Document test
All logs, PCAP logs,

and screen captures

 Department of Veterans Affairs

IPv6 Enablement Support Services

I

APPENDIX A - References

The following table summarizes the material referenced in this document.

Document Name Originator/Version/Date Description

Guidelines for the Secure

Deployment of IPv6

NIST SP 800-119; December

2010

Due to the exhaustion of IPv4 (Internet

Protocol version 4) address space, and

the Office of Management and Budget

(OMB)1 mandate that U.S. federal

agencies begin to use the IPv6 (Internet

Protocol version 6) protocol, NIST

undertook the development of a guide

to help educate federal agencies about

the possible security risks during their

initial IPv6 deployment. This

document provides guidelines for

organizations to aid in securely

deploying IPv6.

Transition to IPv6 OMB; September 28, 2010 This memo describes specific steps for

agencies to expedite the operational

deployment and use of IPv6. This set

the 2012 and 2014 objectives and

dates.

USGv6 Test Methods:

General Description and

Validation

NIST SP 500-273; November

30, 2009 (Original; updated

versions available on-line)

This document forms part of the

USGv6 Testing Program. It is

specifically directed at:

Accreditation organizations who are

signatory to the International

Laboratory Accreditation (ILAC)

mutual recognition arrangement;

Testing laboratories who will apply to

such an accreditor for USGv6 profile

testing accreditation, and;

Test method developers who develop

abstract and/or executable tets and test

methods for USGv6 capable hosts,

routers and network protection devices.

Taken together with the abstract test

specifications published at the USGv6

 Department of Veterans Affairs

IPv6 Enablement Support Services

II

testing website [14] it provides the

essential material for accreditors to

establish testing programs compliant

with ISO/IEC 17025 [3] and for test

laboratories to seek accreditation for

USGv6 test methods.

Planning Guide/Roadmap

Toward IPv6 Adoption

within the U.S.

Government

Federal CIO Council; Version

1.0; May 2009

The purpose of this document is to aid

in understanding the Federal

Government’s Internet Protocol

version 6 (IPv6) vision and to provide

specific guidance for adopting and

exploiting this protocol for business

and technology. Based on the

information in this document, the chief

architect or CIO should be able to

develop and explain the business case

for IPv6 transition, develop a Target

Architecture and Transition Strategy

Plan to guide the agency’s IPv6

transition, and integrate IPv6

requirements into impacted federal

initiatives.

A Profile for IPv6 in the

U.S. Government

NIST SP 500-267; Ver 1.0;

July 2008 (Original; updated

versions available on-line)

This document recommends a

technology acquisition profile for

common IPv6 devices to be procured

and deployed in operational USG IT

systems. This standards profile is

meant to: (a) define a simple taxonomy

of common network devices; (b) define

their minimal mandatory IPv6

capabilities and identify significant

configuration options so as to assist

agencies in the development of more

specific acquisition and deployment

plans; and, (c) provide the technical

basis upon which future USG polices

can be defined.

IPv6 Transition Guidance Federal CIO Council

Architecture and Infrastructure

This document provides the single

most comprehensive federal guidance

 Department of Veterans Affairs

IPv6 Enablement Support Services

III

Committee; February 2006 regarding the establishment of training

within respective agencies in order to

support a transition to IPv6. Although

specifically tied to the OMB 05-22

memorandum and associated

timeframe, the process remains

appropriate, and, as a reference, is still

applicable.

Transition Planning for

Internet Protocol Version

6 (IPv6)

OMB; M-05-22; August 2,

2005

This memorandum and its attachments

provide guidance to the agencies to

ensure an orderly and secure transition

from Internet Protocol Version 4

(IPv4) to Version 6 (IPv6). Since the

Internet Protocol is core to an agency’s

IT infrastructure, beginning in

February, 2006 OMB will use the

Enterprise Architecture Assessment

Framework to evaluate agency IPv6

transition planning and progress, IP

device inventory completeness, and

impact analysis thoroughness.

IPv6 Node Requirements

RFC 6434; December 2011 This document defines requirements

for IPv6 nodes. IPv6 will be deployed

in a wide range of devices and

situations. Specifying the requirements

for IPv6 nodes allows IPv6 to function

well and interoperate in a large number

of situations and deployments.

“Programming Guidelines

on Transition to IPv6”

Tomas P. de Miguel and Eva

M. Castro, January 2003

“IPv6 Network

Programming”

Jun-ichiro itojun Hagino,

ISBN: 1-55558-318-0, 2004

 Department of Veterans Affairs

IPv6 Enablement Support Services

IV

APPENDIX B - Glossary and Key Terms

The following table provides definitions and explanations for terms and acronyms relevant to the

content presented within this document.

AAAA: Authentication, authorization, accounting and auditing

ACL: Access Control list

ARIN: American Registry for Internet Numbers

ARP: Address Resolution Protocol

CCTV: Closed circuit television

CPIC: Capital Planning and Investment Control

COI: Communities of Interest

COOP: Continuity of Operations Plan

DHCPv6: Dynamic Host Configuration Protocol for IPv6

DISR: DoD Information Standards Registry

DMZ: Demilitarized zone

DNS: Domain Name System

DNSSEC: Domain Name System (DNS) Security Extensions

DoD: Department of Defense

DOL: Department of Labor

DOT: Department of Transportation

EA: Enterprise Architecture

EAAF: Enterprise Architecture Assessment Framework

E-Authentication: Electronic Authentication

ED: Education

E-Mail: Electronic Mail

e-Gov: Electronic Government

FDCC: Federal Desktop Core Configuration

FEA PM: Federal Enterprise Architecture Program Management Office

Firewall: A firewall is a dedicated appliance, or software running on another computer, which

inspects network traffic passing through it, and denies or permits passage based on a set of rules.

FTP: File Transfer Protocol

GRE: Generic Routing Encapsulation

HSPD-12: Homeland Security Presidential Directive (HSPD) 12 is “Policy for a Common

Identification Standard for Federal Employees and Contractors”

IA: Information Assurance

IDS: Intrusion detection system

IETF: Internet Engineering Task Force

IKE: Internet Key Exchange

IP Fax: Internet Protocol Facsimile

IPS: Intrusion prevention system

IPsec: Internet Protocol Security

 Department of Veterans Affairs

IPv6 Enablement Support Services

V

IPT: Integrated Project Team

IPv4: Internet Protocol Version 4

IPv6: Internet Protocol Version 6

IRS: Internal Revenue Service

ISATAP: Intra-Site Automatic Tunnel Addressing Protocol

IS-IS: Intermediate system to intermediate system

ISP: Internet Service Provider

IT: Information Technology

ITI LoB: Information Technology (IT) Infrastructure Line of Business

ITI PPMO: IT Infrastructure Program Performance Measurement Office

ITS: Intelligent Transportation Systems

ITV: In-Transit Visibility

LAN: Local area network

LOB: Line of Business

MAC ID: Media Access Control Identification. MAC is also known as Medium Access Control

MIPv6: Mobile IP version 6

MPLS: Multi Protocol Label Switching

MTU: Maximum Transfer Unit

NAT: Network Address Translation

NEMO: Network mobility

NETWORX: Federal Government contract vehicle for telecommunications and related services

NIST: National Institute for Standards and Technology

NMS: Network Management System

OMB: Office of Management and Budget

OS: Operating system

OSPF: Open Shortest Path First

PC’s: Personal computers

PDA: Personal digital assistant

PKI: Public key infrastructure

QoS: Quality of service

RFC: Request for Comments

RFP: Request for Proposal

RIR: Regional Internet Registry

SDK: Software Development Kit

SNMP: Simple Network Management Protocol

SOA: Service-oriented architecture

SRM: Secure Remove

SSL: Secure Sockets Layer

TCP/IP: Transmission Control Protocol/Internet Protocol

TIC: Trusted Internet Connection

 Department of Veterans Affairs

IPv6 Enablement Support Services

VI

TRM: Time Reversal Mirror

UC: Unified Communications

USG IPv6 FAQ’s: United States Government IPv6 Frequently Asked Questions

USPS: U.S. Postal Service

VLAN: virtual LAN

VoIP: Voice over Internet Protocol (IP)

VPN: Virtual Private Network

WAAS: Wide Area Application Services

WAN: Wide area network

Wi-Fi: A trade name for the popular wireless technology used in home networks, mobile

phones, video games and other electronic devices that require some form of wireless networking

capability. Wi-Fi technologies are supported by nearly every modern personal computer

operating system, most advanced game consoles and laptops, and many printers and other

peripherals.

WOA: Web Platform Oriented Architecture

 Department of Veterans Affairs

IPv6 Enablement Support Services

VII

APPENDIX C - Code Examples

MICROSOFT

Microsoft Developer Studio Visual C++ Client and Server (Protocol Independent)

Client (appropriately commented code provided below)

The following code is the IP agnostic, Protocol Independent (PI) Client.c file, which is an IPv6-e

nabled version of the Simplec.c file provided within the Microsoft SDK.

// client.c - Simple TCP/UDP client using Winsock 2.2
//
// This is a part of the Microsoft<entity type="reg"/> Source Cod
e Samples.
// Copyright 1996 - 2000 Microsoft Corporation.
// All rights reserved.
// This source code is only intended as a supplement to
// Microsoft Development Tools and/or WinHelp<entity type="reg"/>
documentation.
// See these sources for detailed information regarding the
// Microsoft samples programs.
//
#define WIN32_LEAN_AND_MEAN

#include <winsock2.h>
#include <ws2tcpip.h>
#include <stdio.h>
#include <stdlib.h>
//#include <string.h>

// Needed for the Windows 2000 IPv6 Tech Preview.
#if (_WIN32_WINNT == 0x0500)
#include <tpipv6.h>
#endif

// Link with ws2_32.lib
#pragma comment(lib, "Ws2_32.lib")

#define STRICMP _stricmp

//
// This code assumes that at the transport level, the system only supp
orts

 Department of Veterans Affairs

IPv6 Enablement Support Services

VIII

// one stream protocol (TCP) and one datagram protocol (UDP). Therefo
re,
// specifying a socket type of SOCK_STREAM is equivalent to specifying
TCP
// and specifying a socket type of SOCK_DGRAM is equivalent to specify
ing UDP.
//

#define DEFAULT_SERVER NULL // Will use the loopback interface
#define DEFAULT_FAMILY PF_UNSPEC // Accept either IPv4 or IPv6
#define DEFAULT_SOCKTYPE SOCK_STREAM // TCP
#define DEFAULT_PORT "5001" // Arbitrary, albiet a histori
cal test port
#define DEFAULT_EXTRA 0 // Number of "extra" bytes to send

#define BUFFER_SIZE 65536

#define UNKNOWN_NAME "<unknown>"

void Usage(char *ProgName)
{
 fprintf(stderr, "\nSimple socket sample client program.\n");
 fprintf(stderr,
 "\n%s [-s server] [-f family] [-t transport] [-p port] [-b
bytes] [-n number]\n\n",
 ProgName);
 fprintf(stderr, " server\tServer name or IP address. (default: %
s)\n",
 (DEFAULT_SERVER == NULL) ? "loopback address" : DEFAULT_SE
RVER);
 fprintf(stderr,
 " family\tOne of PF_INET, PF_INET6 or PF_UNSPEC. (defaul
t: %s)\n",
 (DEFAULT_FAMILY ==
 PF_UNSPEC) ? "PF_UNSPEC" : ((DEFAULT_FAMILY ==
 PF_INET) ? "PF_INET" : "PF_I
NET6"));
 fprintf(stderr, " transport\tEither TCP or UDP. (default: %s)\n"
,
 (DEFAULT_SOCKTYPE == SOCK_STREAM) ? "TCP" : "UDP");
 fprintf(stderr, " port\t\tPort on which to connect. (default: %s
)\n",
 DEFAULT_PORT);
 fprintf(stderr, " bytes\t\tBytes of extra data to send. (default
: %d)\n",

 Department of Veterans Affairs

IPv6 Enablement Support Services

IX

 DEFAULT_EXTRA);
 fprintf(stderr, " number\tNumber of sends to perform. (default:
1)\n");
 fprintf(stderr, " (-n by itself makes client run in an infinite l
oop,");
 fprintf(stderr, " Hit Ctrl-C to terminate)\n");
 WSACleanup();
 exit(1);
}

LPTSTR PrintError(int ErrorCode)
{
 static TCHAR Message[1024];

 // If this program was multithreaded, we'd want to use
 // FORMAT_MESSAGE_ALLOCATE_BUFFER instead of a static buffer here.
 // (And of course, free the buffer when we were done with it)

 FormatMessage(FORMAT_MESSAGE_FROM_SYSTEM | FORMAT_MESSAGE_IGNORE_I
NSERTS |
 FORMAT_MESSAGE_MAX_WIDTH_MASK,
 NULL, ErrorCode, MAKELANGID(LANG_NEUTRAL, SUBLANG_DE
FAULT),
 Message, 1024, NULL);
 return Message;
}

int ReceiveAndPrint(SOCKET ConnSocket, char *Buffer, int BufLen)
{
 int AmountRead;

 AmountRead = recv(ConnSocket, Buffer, BufLen, 0);
 if (AmountRead == SOCKET_ERROR) {
 fprintf(stderr, "recv() failed with error %d: %s\n",
 WSAGetLastError(), PrintError(WSAGetLastError()));
 closesocket(ConnSocket);
 WSACleanup();
 exit(1);
 }
 //
 // We are not likely to see this with UDP, since there is no
 // 'connection' established.
 //
 if (AmountRead == 0) {
 printf("Server closed connection\n");

 Department of Veterans Affairs

IPv6 Enablement Support Services

X

 closesocket(ConnSocket);
 WSACleanup();
 exit(0);
 }

 printf("Received %d bytes from server: [%.*s]\n",
 AmountRead, AmountRead, Buffer);

 return AmountRead;
}

int main(int argc, char **argv)
{

 char Buffer[BUFFER_SIZE], AddrName[NI_MAXHOST];

 char *Server = DEFAULT_SERVER;
 int Family = DEFAULT_FAMILY;
 int SocketType = DEFAULT_SOCKTYPE;
 char *Port = DEFAULT_PORT;

 WSADATA wsaData;

 int i, RetVal, AddrLen, AmountToSend;
 int ExtraBytes = DEFAULT_EXTRA;
 unsigned int Iteration, MaxIterations = 1;
 BOOL RunForever = FALSE;

 ADDRINFO Hints, *AddrInfo, *AI;
 SOCKET ConnSocket = INVALID_SOCKET;
 struct sockaddr_storage Addr;

 if (argc > 1) {
 for (i = 1; i < argc; i++) {
 if (((argv[i][0] == '-') || (argv[i][0] == '/')) &&
 (argv[i][1] != 0) && (argv[i][2] == 0)) {
 switch (tolower(argv[i][1])) {
 case 'f':
 if (!argv[i + 1])
 Usage(argv[0]);
 if (!STRICMP(argv[i + 1], "PF_INET"))
 Family = PF_INET;
 else if (!STRICMP(argv[i + 1], "AF_INET"))
 Family = PF_INET;
 else if (!STRICMP(argv[i + 1], "PF_INET6"))

 Department of Veterans Affairs

IPv6 Enablement Support Services

XI

 Family = PF_INET6;
 else if (!STRICMP(argv[i + 1], "AF_INET6"))
 Family = PF_INET6;
 else if (!STRICMP(argv[i + 1], "PF_UNSPEC"))
 Family = PF_UNSPEC;
 else if (!STRICMP(argv[i + 1], "AF_UNSPEC"))
 Family = PF_UNSPEC;
 else
 Usage(argv[0]);
 i++;
 break;

 case 't':
 if (!argv[i + 1])
 Usage(argv[0]);
 if (!STRICMP(argv[i + 1], "TCP"))
 SocketType = SOCK_STREAM;
 else if (!STRICMP(argv[i + 1], "UDP"))
 SocketType = SOCK_DGRAM;
 else
 Usage(argv[0]);
 i++;
 break;

 case 's':
 if (argv[i + 1]) {
 if (argv[i + 1][0] != '-') {
 Server = argv[++i];
 break;
 }
 }
 Usage(argv[0]);
 break;

 case 'p':
 if (argv[i + 1]) {
 if (argv[i + 1][0] != '-') {
 Port = argv[++i];
 break;
 }
 }
 Usage(argv[0]);
 break;

 case 'b':

 Department of Veterans Affairs

IPv6 Enablement Support Services

XII

 if (argv[i + 1]) {
 if (argv[i + 1][0] != '-') {
 ExtraBytes = atoi(argv[++i]);
 if (ExtraBytes >
 sizeof (Buffer) -
 sizeof ("Message #4294967295"))
 Usage(argv[0]);
 break;
 }
 }
 Usage(argv[0]);
 break;

 case 'n':
 if (argv[i + 1]) {
 if (argv[i + 1][0] != '-') {
 MaxIterations = atoi(argv[++i]);
 break;
 }
 }
 RunForever = TRUE;
 break;

 default:
 Usage(argv[0]);
 break;
 }
 } else
 Usage(argv[0]);
 }
 }
 // Ask for Winsock version 2.2.
 if ((RetVal = WSAStartup(MAKEWORD(2, 2), &wsaData)) != 0) {
 fprintf(stderr, "WSAStartup failed with error %d: %s\n",
 RetVal, PrintError(RetVal));
 WSACleanup();
 return -1;
 }
 //
 // By not setting the AI_PASSIVE flag in the hints to getaddrinfo,
we're
 // indicating that we intend to use the resulting address(es) to c
onnect
 // to a service. This means that when the Server parameter is NUL
L,

 Department of Veterans Affairs

IPv6 Enablement Support Services

XIII

 // getaddrinfo will return one entry per allowed protocol family
 // containing the loopback address for that family.
 //

 memset(&Hints, 0, sizeof (Hints));
 Hints.ai_family = Family;
 Hints.ai_socktype = SocketType;
 RetVal = getaddrinfo(Server, Port, &Hints, &AddrInfo);
 if (RetVal != 0) {
 fprintf(stderr,
 "Cannot resolve address [%s] and port [%s], error %d:
%s\n",
 Server, Port, RetVal, gai_strerror(RetVal));
 WSACleanup();
 return -1;
 }
 //
 // Try each address getaddrinfo returned, until we find one to whi
ch
 // we can successfully connect.
 //
 for (AI = AddrInfo; AI != NULL; AI = AI->ai_next) {

 // Open a socket with the correct address family for this addr
ess.

 ConnSocket = socket(AI->ai_family, AI->ai_socktype, AI->ai_pro
tocol);

//**** DEBUG
 printf("socket call with family: %d socktype: %d, protocol: %d
\n",
 AI->ai_family, AI->ai_socktype, AI->ai_protocol);
 if (ConnSocket == INVALID_SOCKET)
 printf("socket call failed with %d\n", WSAGetLastError());
//**** DEBUG END

 if (ConnSocket == INVALID_SOCKET) {
 fprintf(stderr, "Error Opening socket, error %d: %s\n",
 WSAGetLastError(), PrintError(WSAGetLastError()));
 continue;
 }
 //
 // Notice that nothing in this code is specific to whether we
 // are using UDP or TCP.

 Department of Veterans Affairs

IPv6 Enablement Support Services

XIV

 //
 // When connect() is called on a datagram socket, it does not
 // actually establish the connection as a stream (TCP) socket
 // would. Instead, TCP/IP establishes the remote half of the
 // (LocalIPAddress, LocalPort, RemoteIP, RemotePort) mapping.
 // This enables us to use send() and recv() on datagram socket
s,
 // instead of recvfrom() and sendto().
 //

 printf("Attempting to connect to: %s\n", Server ? Server : "lo
calhost");
 if (connect(ConnSocket, AI->ai_addr, (int) AI->ai_addrlen) !=
SOCKET_ERROR)
 break;

 i = WSAGetLastError();
 if (getnameinfo(AI->ai_addr, (int) AI->ai_addrlen, AddrName,
 sizeof (AddrName), NULL, 0, NI_NUMERICHOST) !=
0)
 strcpy_s(AddrName, sizeof (AddrName), UNKNOWN_NAME);
 fprintf(stderr, "connect() to %s failed with error %d: %s\n",
 AddrName, i, PrintError(i));
 closesocket(ConnSocket);
 }

 if (AI == NULL) {
 fprintf(stderr, "Fatal error: unable to connect to the server.
\n");
 WSACleanup();
 return -1;
 }
 //
 // This demonstrates how to determine to where a socket is connect
ed.
 //
 AddrLen = sizeof (Addr);
 if (getpeername(ConnSocket, (LPSOCKADDR) & Addr, (int *) &AddrLen)
== SOCKET_ERROR) {
 fprintf(stderr, "getpeername() failed with error %d: %s\n",
 WSAGetLastError(), PrintError(WSAGetLastError()));
 } else {
 if (getnameinfo((LPSOCKADDR) & Addr, AddrLen, AddrName,
 sizeof (AddrName), NULL, 0, NI_NUMERICHOST) !=
0)

 Department of Veterans Affairs

IPv6 Enablement Support Services

XV

 strcpy_s(AddrName, sizeof (AddrName), UNKNOWN_NAME);
 printf("Connected to %s, port %d, protocol %s, protocol family
%s\n",
 AddrName, ntohs(SS_PORT(&Addr)),
 (AI->ai_socktype == SOCK_STREAM) ? "TCP" : "UDP",
 (AI->ai_family == PF_INET) ? "PF_INET" : "PF_INET6");
 }

 // We are done with the address info chain, so we can free it.
 freeaddrinfo(AddrInfo);

 //
 // Find out what local address and port the system picked for us.
 //
 AddrLen = sizeof (Addr);
 if (getsockname(ConnSocket, (LPSOCKADDR) & Addr, &AddrLen) == SOCK
ET_ERROR) {
 fprintf(stderr, "getsockname() failed with error %d: %s\n",
 WSAGetLastError(), PrintError(WSAGetLastError()));
 } else {
 if (getnameinfo((LPSOCKADDR) & Addr, AddrLen, AddrName,
 sizeof (AddrName), NULL, 0, NI_NUMERICHOST) !=
0)
 strcpy_s(AddrName, sizeof (AddrName), UNKNOWN_NAME);
 printf("Using local address %s, port %d\n",
 AddrName, ntohs(SS_PORT(&Addr)));
 }

 //
 // Send and receive in a loop for the requested number of iteratio
ns.
 //
 for (Iteration = 0; RunForever || Iteration < MaxIterations; Itera
tion++) {

 // Compose a message to send.
 AmountToSend =
 sprintf_s(Buffer, sizeof (Buffer), "Message #%u", Iteratio
n + 1);
 for (i = 0; i < ExtraBytes; i++) {
 Buffer[AmountToSend++] = (char) ((i & 0x3f) + 0x20);
 }

 // Send the message. Since we are using a blocking socket, th
is

 Department of Veterans Affairs

IPv6 Enablement Support Services

XVI

 // call shouldn't return until it's able to send the entire am
ount.
 RetVal = send(ConnSocket, Buffer, AmountToSend, 0);
 if (RetVal == SOCKET_ERROR) {
 fprintf(stderr, "send() failed with error %d: %s\n",
 WSAGetLastError(), PrintError(WSAGetLastError()));
 WSACleanup();
 return -1;
 }

 printf("Sent %d bytes (out of %d bytes) of data: [%.*s]\n",
 RetVal, AmountToSend, AmountToSend, Buffer);

 // Clear buffer just to prove we're really receiving something
.
 memset(Buffer, 0, sizeof (Buffer));

 // Receive and print server's reply.
 ReceiveAndPrint(ConnSocket, Buffer, sizeof (Buffer));
 }

 // Tell system we're done sending.
 printf("Done sending\n");
 shutdown(ConnSocket, SD_SEND);

 //
 // Since TCP does not preserve message boundaries, there may still
 // be more data arriving from the server. So we continue to recei
ve
 // data until the server closes the connection.
 //
 if (SocketType == SOCK_STREAM)
 while (ReceiveAndPrint(ConnSocket, Buffer, sizeof (Buffer)) !=
0) ;

 closesocket(ConnSocket);
 WSACleanup();
 return 0;
}
Server (appropriately commented code provided below)

The following code is the IP-agnostic PI Server.c file, which is an IPv6-enabled version of the

Simples.c file

//
// server.c - Simple TCP/UDP server using Winsock 2.2
//

 Department of Veterans Affairs

IPv6 Enablement Support Services

XVII

// This is a part of the Microsoft<entity type="reg"/> Source Cod
e Samples.
// Copyright 1996 - 2000 Microsoft Corporation.
// All rights reserved.
// This source code is only intended as a supplement to
// Microsoft Development Tools and/or WinHelp<entity type="reg"/>
documentation.
// See these sources for detailed information regarding the
// Microsoft samples programs.
//

#undef UNICODE

#define WIN32_LEAN_AND_MEAN

#include <windows.h>
#include <winsock2.h>
#include <ws2tcpip.h>
#include <mstcpip.h>
#include <stdlib.h>
#include <stdio.h>

// Needed for the Windows 2000 IPv6 Tech Preview.
#if (_WIN32_WINNT == 0x0500)
#include <tpipv6.h>
#endif

// Link with ws2_32.lib
#pragma comment(lib, "Ws2_32.lib")

#define STRICMP _stricmp

//
// This code assumes that at the transport level, the system only supp
orts
// one stream protocol (TCP) and one datagram protocol (UDP). Therefo
re,
// specifying a socket type of SOCK_STREAM is equivalent to specifying
TCP
// and specifying a socket type of SOCK_DGRAM is equivalent to specify
ing UDP.
//

#define DEFAULT_FAMILY PF_UNSPEC // Accept either IPv4 or IPv6
#define DEFAULT_SOCKTYPE SOCK_STREAM // TCP

 Department of Veterans Affairs

IPv6 Enablement Support Services

XVIII

#define DEFAULT_PORT "5001" // Arbitrary, albiet a histori
cal test port
#define BUFFER_SIZE 64 // Set very small for demonstration pu
rposes

void Usage(char *ProgName)
{
 fprintf(stderr, "\nSimple socket sample server program.\n");
 fprintf(stderr,
 "\n%s [-f family] [-t transport] [-p port] [-a address]\n\
n",
 ProgName);
 fprintf(stderr,
 " family\tOne of PF_INET, PF_INET6 or PF_UNSPEC. (defaul
t %s)\n",
 (DEFAULT_FAMILY ==
 PF_UNSPEC) ? "PF_UNSPEC" : ((DEFAULT_FAMILY ==
 PF_INET) ? "PF_INET" : "PF_I
NET6"));
 fprintf(stderr, " transport\tEither TCP or UDP. (default: %s)\n"
,
 (DEFAULT_SOCKTYPE == SOCK_STREAM) ? "TCP" : "UDP");
 fprintf(stderr, " port\t\tPort on which to bind. (default %s)\n"
,
 DEFAULT_PORT);
 fprintf(stderr,
 " address\tIP address on which to bind. (default: unspec
ified address)\n");
 WSACleanup();
 exit(1);
}

LPSTR PrintError(int ErrorCode)
{
 static char Message[1024];

 // If this program was multithreaded, we'd want to use
 // FORMAT_MESSAGE_ALLOCATE_BUFFER instead of a static buffer here.
 // (And of course, free the buffer when we were done with it)

 FormatMessage(FORMAT_MESSAGE_FROM_SYSTEM | FORMAT_MESSAGE_IGNORE_I
NSERTS |
 FORMAT_MESSAGE_MAX_WIDTH_MASK, NULL, ErrorCode,
 MAKELANGID(LANG_NEUTRAL, SUBLANG_DEFAULT),
 (LPSTR) Message, 1024, NULL);

 Department of Veterans Affairs

IPv6 Enablement Support Services

XIX

 return Message;
}

int main(int argc, char **argv)
{
 char Buffer[BUFFER_SIZE], Hostname[NI_MAXHOST];
 int Family = DEFAULT_FAMILY;
 int SocketType = DEFAULT_SOCKTYPE;
 char *Port = DEFAULT_PORT;
 char *Address = NULL;
 int i, NumSocks, RetVal, FromLen, AmountRead;
// int idx;
 SOCKADDR_STORAGE From;
 WSADATA wsaData;
 ADDRINFO Hints, *AddrInfo, *AI;
 SOCKET ServSock[FD_SETSIZE];
 fd_set SockSet;

 // Parse arguments
 if (argc > 1) {
 for (i = 1; i < argc; i++) {
 if ((argv[i][0] == '-') || (argv[i][0] == '/') &&
 (argv[i][1] != 0) && (argv[i][2] == 0)) {
 switch (tolower(argv[i][1])) {
 case 'f':
 if (!argv[i + 1])
 Usage(argv[0]);
 if (!STRICMP(argv[i + 1], "PF_INET"))
 Family = PF_INET;
 else if (!STRICMP(argv[i + 1], "PF_INET6"))
 Family = PF_INET6;
 else if (!STRICMP(argv[i + 1], "PF_UNSPEC"))
 Family = PF_UNSPEC;
 else
 Usage(argv[0]);
 i++;
 break;

 case 't':
 if (!argv[i + 1])
 Usage(argv[0]);
 if (!STRICMP(argv[i + 1], "TCP"))
 SocketType = SOCK_STREAM;
 else if (!STRICMP(argv[i + 1], "UDP"))
 SocketType = SOCK_DGRAM;

 Department of Veterans Affairs

IPv6 Enablement Support Services

XX

 else
 Usage(argv[0]);
 i++;
 break;

 case 'a':
 if (argv[i + 1]) {
 if (argv[i + 1][0] != '-') {
 Address = argv[++i];
 break;
 }
 }
 Usage(argv[0]);
 break;

 case 'p':
 if (argv[i + 1]) {
 if (argv[i + 1][0] != '-') {
 Port = argv[++i];
 break;
 }
 }
 Usage(argv[0]);
 break;

 default:
 Usage(argv[0]);
 break;
 }
 } else
 Usage(argv[0]);
 }
 }
 // Ask for Winsock version 2.2.
 if ((RetVal = WSAStartup(MAKEWORD(2, 2), &wsaData)) != 0) {
 fprintf(stderr, "WSAStartup failed with error %d: %s\n",
 RetVal, PrintError(RetVal));
 WSACleanup();
 return -1;
 }

 if (Port == NULL) {
 Usage(argv[0]);
 }
 //

 Department of Veterans Affairs

IPv6 Enablement Support Services

XXI

 // By setting the AI_PASSIVE flag in the hints to getaddrinfo, we'
re
 // indicating that we intend to use the resulting address(es) to b
ind
 // to a socket(s) for accepting incoming connections. This means
that
 // when the Address parameter is NULL, getaddrinfo will return one
 // entry per allowed protocol family containing the unspecified ad
dress
 // for that family.
 //
 memset(&Hints, 0, sizeof (Hints));
 Hints.ai_family = Family;
 Hints.ai_socktype = SocketType;
 Hints.ai_flags = AI_NUMERICHOST | AI_PASSIVE;
 RetVal = getaddrinfo(Address, Port, &Hints, &AddrInfo);
 if (RetVal != 0) {
 fprintf(stderr, "getaddrinfo failed with error %d: %s\n",
 RetVal, gai_strerror(RetVal));
 WSACleanup();
 return -1;
 }
 //
 // For each address getaddrinfo returned, we create a new socket,
 // bind that address to it, and create a queue to listen on.
 //
 for (i = 0, AI = AddrInfo; AI != NULL; AI = AI->ai_next) {

 // Highly unlikely, but check anyway.
 if (i == FD_SETSIZE) {
 printf("getaddrinfo returned more addresses than we could
use.\n");
 break;
 }
 // This example only supports PF_INET and PF_INET6.
 if ((AI->ai_family != PF_INET) && (AI->ai_family != PF_INET6))
 continue;

 // Open a socket with the correct address family for this addr
ess.
 ServSock[i] = socket(AI->ai_family, AI->ai_socktype, AI->ai_pr
otocol);
 if (ServSock[i] == INVALID_SOCKET) {
 fprintf(stderr, "socket() failed with error %d: %s\n",
 WSAGetLastError(), PrintError(WSAGetLastError()));

 Department of Veterans Affairs

IPv6 Enablement Support Services

XXII

 continue;
 }

 if ((AI->ai_family == PF_INET6) &&
 IN6_IS_ADDR_LINKLOCAL((IN6_ADDR *) INETADDR_ADDRESS(AI->ai
_addr)) &&
 (((SOCKADDR_IN6 *) (AI->ai_addr))->sin6_scope_id == 0)
) {
 fprintf(stderr,
 "IPv6 link local addresses should specify a scope
ID!\n");
 }
 //
 // bind() associates a local address and port combination
 // with the socket just created. This is most useful when
 // the application is a server that has a well-known port
 // that clients know about in advance.
 //
 if (bind(ServSock[i], AI->ai_addr, (int) AI->ai_addrlen) == SO
CKET_ERROR) {
 fprintf(stderr, "bind() failed with error %d: %s\n",
 WSAGetLastError(), PrintError(WSAGetLastError()));
 closesocket(ServSock[i]);
 continue;
 }
 //
 // So far, everything we did was applicable to TCP as well as
UDP.
 // However, there are certain fundamental differences between
stream
 // protocols such as TCP and datagram protocols such as UDP.
 //
 // Only connection orientated sockets, for example those of ty
pe
 // SOCK_STREAM, can listen() for incoming connections.
 //
 if (SocketType == SOCK_STREAM) {
 if (listen(ServSock[i], 5) == SOCKET_ERROR) {
 fprintf(stderr, "listen() failed with error %d: %s\n",
 WSAGetLastError(), PrintError(WSAGetLastError(
)));
 closesocket(ServSock[i]);
 continue;
 }
 }

 Department of Veterans Affairs

IPv6 Enablement Support Services

XXIII

 printf("'Listening' on port %s, protocol %s, protocol family %
s\n",
 Port, (SocketType == SOCK_STREAM) ? "TCP" : "UDP",
 (AI->ai_family == PF_INET) ? "PF_INET" : "PF_INET6");
 i++;
 }

 freeaddrinfo(AddrInfo);

 if (i == 0) {
 fprintf(stderr, "Fatal error: unable to serve on any address.\
n");
 WSACleanup();
 return -1;
 }
 NumSocks = i;

 //
 // We now put the server into an eternal loop,
 // serving requests as they arrive.
 //
 FD_ZERO(&SockSet);
 while (1) {

 FromLen = sizeof (From);

 //
 // For connection orientated protocols, we will handle the
 // packets received from a connection collectively. For datag
ram
 // protocols, we have to handle each datagram individually.
 //

 //
 // Check to see if we have any sockets remaining to be served
 // from previous time through this loop. If not, call select(
)
 // to wait for a connection request or a datagram to arrive.
 //
 for (i = 0; i < NumSocks; i++) {
 if (FD_ISSET(ServSock[i], &SockSet))
 break;
 }
 if (i == NumSocks) {

 Department of Veterans Affairs

IPv6 Enablement Support Services

XXIV

 for (i = 0; i < NumSocks; i++)
 FD_SET(ServSock[i], &SockSet);
 if (select(NumSocks, &SockSet, 0, 0, 0) == SOCKET_ERROR) {
 fprintf(stderr, "select() failed with error %d: %s\n",
 WSAGetLastError(), PrintError(WSAGetLastError(
)));
 WSACleanup();
 return -1;
 }
 }
 for (i = 0; i < NumSocks; i++) {
 if (FD_ISSET(ServSock[i], &SockSet)) {
 FD_CLR(ServSock[i], &SockSet);
 break;
 }
 }

 if (SocketType == SOCK_STREAM) {
 SOCKET ConnSock;

 //
 // Since this socket was returned by the select(), we know
we
 // have a connection waiting and that this accept() won't
block.
 //
 ConnSock = accept(ServSock[i], (LPSOCKADDR) & From, &FromL
en);
 if (ConnSock == INVALID_SOCKET) {
 fprintf(stderr, "accept() failed with error %d: %s\n",
 WSAGetLastError(), PrintError(WSAGetLastError(
)));
 WSACleanup();
 return -1;
 }
 if (getnameinfo((LPSOCKADDR) & From, FromLen, Hostname,
 sizeof (Hostname), NULL, 0, NI_NUMERICHOST
) != 0)
 strcpy_s(Hostname, NI_MAXHOST, "<unknown>");
 printf("\nAccepted connection from %s\n", Hostname);

 //
 // This sample server only handles connections sequentiall
y.
 // To handle multiple connections simultaneously, a server

 Department of Veterans Affairs

IPv6 Enablement Support Services

XXV

 // would likely want to launch another thread or process a
t this
 // point to handle each individual connection. Alternativ
ely,
 // it could keep a socket per connection and use select()
 // on the fd_set to determine which to read from next.
 //
 // Here we just loop until this connection terminates.
 //

 while (1) {

 //
 // We now read in data from the client. Because TCP
 // does NOT maintain message boundaries, we may recv()
 // the client's data grouped differently than it was
 // sent. Since all this server does is echo the data
it
 // receives back to the client, we don't need to conce
rn
 // ourselves about message boundaries. But it does me
an
 // that the message data we print for a particular rec
v()
 // below may contain more or less data than was contai
ned
 // in a particular client send().
 //

 AmountRead = recv(ConnSock, Buffer, sizeof (Buffer), 0
);
 if (AmountRead == SOCKET_ERROR) {
 fprintf(stderr, "recv() failed with error %d: %s\n
",
 WSAGetLastError(), PrintError(WSAGetLastEr
ror()));
 closesocket(ConnSock);
 break;
 }
 if (AmountRead == 0) {
 printf("Client closed connection\n");
 closesocket(ConnSock);
 break;
 }

 Department of Veterans Affairs

IPv6 Enablement Support Services

XXVI

 printf("Received %d bytes from client: [%.*s]\n",
 AmountRead, AmountRead, Buffer);
 printf("Echoing same data back to client\n");

 RetVal = send(ConnSock, Buffer, AmountRead, 0);
 if (RetVal == SOCKET_ERROR) {
 fprintf(stderr, "send() failed: error %d: %s\n",
 WSAGetLastError(), PrintError(WSAGetLastEr
ror()));
 closesocket(ConnSock);
 break;
 }
 }

 } else {

 //
 // Since UDP maintains message boundaries, the amount of d
ata
 // we get from a recvfrom() should match exactly the amoun
t of
 // data the client sent in the corresponding sendto().
 //
 AmountRead = recvfrom(ServSock[i], Buffer, sizeof (Buffer)
, 0,
 (LPSOCKADDR) & From, &FromLen);
 if (AmountRead == SOCKET_ERROR) {
 fprintf(stderr, "recvfrom() failed with error %d: %s\n
",
 WSAGetLastError(), PrintError(WSAGetLastError(
)));
 closesocket(ServSock[i]);
 break;
 }
 if (AmountRead == 0) {
 // This should never happen on an unconnected socket,
but...
 printf("recvfrom() returned zero, aborting\n");
 closesocket(ServSock[i]);
 break;
 }

 RetVal = getnameinfo((LPSOCKADDR) & From, FromLen, Hostnam
e,

 Department of Veterans Affairs

IPv6 Enablement Support Services

XXVII

 sizeof (Hostname), NULL, 0, NI_NUMERI
CHOST);
 if (RetVal != 0) {
 fprintf(stderr, "getnameinfo() failed with error %d: %
s\n",
 RetVal, PrintError(RetVal));
 strcpy_s(Hostname, NI_MAXHOST, "<unknown>");
 }

 printf("Received a %d byte datagram from %s: [%.*s]\n",
 AmountRead, Hostname, AmountRead, Buffer);
 printf("Echoing same data back to client\n");

 RetVal = sendto(ServSock[i], Buffer, AmountRead, 0,
 (LPSOCKADDR) & From, FromLen);
 if (RetVal == SOCKET_ERROR) {
 fprintf(stderr, "send() failed with error %d: %s\n",
 WSAGetLastError(), PrintError(WSAGetLastError(
)));
 }
 }
 }

 return 0;
}

Department of Veterans Affairs

IPv6 Project Management Transition Office

XXVIII

6/29/2012

APPENDIX D – Testing Service Testing Guide

Testing Service Testing Guide
October 2011

Version 1.6

Revision History

Date Version Description Author

7/10/09 1.1 Added version number. Section 3.5

clarified to remove references to Field Test

Release. Section 3.6 removed. The

activities in that section were replaced by

the EDM process outside of TS. Table of

Contents updated.

Testing Service

7/10/10 1.2 Changed User Acceptance Test to User

Functionality Test

OED Process

Management Service

8/05/10 1.3 Removed OED from guide Process Management

10/14/10 1.4 Repaired broken link to Testing QA

Checklist

Process Management

08/23/11 1.5 Changed Operational Readiness Testing

(ORT) to Operational Readiness Review

(ORR)

Process Management

09/17/11 1.6 Deleted Testing QA Checklist as an

obsolete artifact

Process Management

Department of Veterans Affairs

IPv6 Project Management Transition Office

XXIX

6/29/2012

Table of Contents

1. PURPOSE XXX

2. RESPONSIBILITIES XXX

2.1. DEVELOPMENT MANAGER XXX
2.2. PROJECT TEAM XXXI

2.3. TESTING SERVICE XXXII

3. STEPS

 XXXIII

3.1. PERFORM PREPARATORY ACTIVITIES DURING PRODUCT BUILD

 XXXIII

3.2. CONDUCT TESTING SERVICE FOCUS MEETING XXXV

3.3. CONDUCT INDEPENDENTTESTING ACTIVITIES, INITIAL BUILD TESTING

 XXXVI

3.4. CONDUCT INDEPENDENT TESTING ACTIVITIES, SUBSEQUENT BUILD TESTING

 XXXVII
3.5. GRANT TESTING SERVICE APPROVAL TO PROCEED

 XXXIX

4. PROCESSES AND RELATED REFERENCES

 XXXIX

4.1. RELATED PROCESSES

 XXXIX

4.2. RELATED REFERENCES XL

 Department of Veterans Affairs

IPv6 Enablement Support Services

XXX

1 Purpose

This Testing Service Testing Process Guide describes the purpose, roles, responsibilities, and

steps for Testing Service (TS) approval and/or certification of application projects. The

processes, roles, responsibilities, and steps detailed in this guide are specific and relevant to

Testing Service testing. An application project is defined as consisting of applications as well as

their associated services and related dependencies. While the application project may be reliant

on these other services and software dependencies, the approval and/or certification given by TS

is specific to the application in the context as the application relates to those relevant services

and dependencies.

All steps, unless otherwise mentioned, are performed by the Development Manager (formerly

known as Project Manager), Project Team, and Testing Service, which includes internal TS

teams.

2 Responsibilities

The following roles and responsibilities are involved during the testing process conducted by TS.

2.1 Development Manager

The Development Manager is responsible for:

 Releasing the overall application project into the production environment through Product

Support or Enterprise System Management (ESM)

 Managing the software development process for the application project

 Ensuring TS involvement in the project kick-off meeting, the two-day high level meeting with

Office of Information (OI)-wide stakeholder representation, and any subsequent planning

meeting(s) to discuss the implementation of the application project

 Coordinating with TS to have a Capacity Planning (CP) preliminary and final Application Self-

Scoring Evaluation Support System (ASSESS) form submitted. The preliminary and final

ASSESS form for the project can be obtained at

http://vista.med.va.gov/capman/ASSESS_process.asp

 Completing and submitting the Testing Service Request System (TSRS) form necessary to initiate

the initial request. For more information click the following link to access the system:

http://vista.med.va.gov/testingservices/requests_tsrs.asp

 Soliciting from TS an initial estimate of the amount of time and effort for the testing tasks and

adding these estimates to the overall project timeline schedule within the constraints imposed by

the TS workload schedule calendar

NOTE: The proposed dates for EIE Operational Readiness Review (ORR) and Initial Operating

Capability (IOC) Testing this early in the planning stages will be further refined during a

subsequent high level meeting with stakeholder representation.

 Designating appropriate Project Team members as specified points of contact (POCs) to provide

guidance and support throughout the independent testing process with TS

 Coordinating support from Project Team and dependency application(s)/service(s) and/or their

components throughout the testing process

http://vista.med.va.gov/capman/ASSESS_process.asp
http://vista.med.va.gov/testingservices/requests_tsrs.asp

 Department of Veterans Affairs

IPv6 Enablement Support Services

XXXI

 Providing all appropriate software builds and full documentation of the application project as well

as dependency application(s)/service(s) and/or their components, while adhering to the proper

versioning procedure required by TS

 Ensuring that all software builds are viable and ready for testing, that the Product Build Quality

Gate Review is satisfied before entering TS, and that the application has received Software

Quality Assurance (SQA) certification. Viable builds are defined as being the application project

with its associated dependency application(s)/service(s) and/or their components and all artifacts

required in the Testing Service Entrance Criteria

 Accepting refined task estimates from TS as the system is further technically defined and

incorporating these estimates to the master project schedule for the application project

 Ensuring all required TS Entrance Criteria are met as defined in Testing Service Entrance Criteria

 Keeping TS informed of all project schedule changes/variances and changes to application project

build(s) that may necessitate scheduling changes to the Testing Service workload schedule

calendar

 Receiving and coordinating status updates as obtained from TS throughout the testing and

analysis process with Project Team members and all other stakeholders, such as dependency

application(s) project team(s)

2.2 Project Team

The Project team is responsible for:

 Completing the preliminary and final ASSESS process as required for an application project

comparison analysis. The preliminary and final ASSESS form for the project can be obtained at

http://vista.med.va.gov/capman/ASSESS_process.asp

 Completing the appropriate ProPath processes, including Product Component Test, Component

Integration Test, System Test, and User Functionality Test

 Delivering all required input artifacts as referenced in Testing Service Entrance Criteria

 Ensuring the requirements to be tested within the selected features, functions, and/or use cases are

testable, unambiguous, and ready for testing before entering Independent Testing

 Providing guidance and support to TS throughout the Approval and/or Certification process

 Providing all appropriate software builds of the application project, as well as dependency

application(s)/service(s) and/or their components, as one complete package while adhering to the

proper versioning procedure required by TS

 Ensuring that all builds, in the complete package delivered to TS, are viable and ready for testing

before entering TS and have received SQA certification. Builds are defined as being the

application project with its associated dependency application(s)/service(s) and/or their

components

NOTE: For VistA-Legacy (Waterfall) development, complete the SQA Review Checklist.

 Providing assistance with the installation in the Test Center of the System Under Test (SUT)

including all associated databases with appropriate data volume required for testing

 Providing a demonstration of the SUT to TS as the application project is installed in the Test

Center

 Providing timely response to system architectural and other technical questions as needed by TS

 Receiving and acting upon identified defects reported by TS

http://vista.med.va.gov/testingservices/TSdocs/SOP/Testing%20Services%20Entrance%20Criteria%20v1_0.doc
http://vista.med.va.gov/testingservices/TSdocs/SOP/Testing%20Services%20Entrance%20Criteria%20v1_0.doc
http://vista.med.va.gov/capman/ASSESS_process.asp
http://vista.med.va.gov/testingservices/TSdocs/SOP/Testing%20Services%20Entrance%20Criteria%20v1_0.doc

 Department of Veterans Affairs

IPv6 Enablement Support Services

XXXII

 Coordinating all escalation processes in conjunction with TS

 Determining, documenting, and publishing the criteria, in collaboration with TS, which the SUT

must meet for TS formal approval to proceed and for formal certification for national deployment

2.3 Testing Service

Testing Service is responsible for:

 Reviewing, with the Development Manager and the Project Team, all TS high level processes for

IV&V and Performance Engineering testing throughout all necessary points of the Testing

Service HeV Certification Lifecycle

 Reviewing, with the Development Manager and the Project Team, the TS Entrance Criteria

artifacts as submitted by the Development Manager and the Project Team and defined in the

Testing Service Entrance Criteria

 Providing an evaluation score based on the data submitted by the Project Team in preliminary and

final ASSESS forms

NOTE: Refer to http://vista.med.va.gov/capman/ASSESS_process.asp for details on the Capacity

Planning ASSESS process.

 Gathering current system performance statistics by providing workload baselines for the Project

Team’s application project using applicable metrics when available

 Coordinating an environment review of the hardware and software components including any

dependency application(s)/service(s) and/or their components that comprise the SUT

 Ensuring all appropriate builds of the application project as well as dependency

application(s)/service(s) and/or their components as provided by the Project Team adhere to the

proper versioning procedure required by TS

 Verifying that all builds delivered from the Project Team as one complete package are viable and

ready for TS testing before entering TS and have received SQA certification. Builds are defined

as being the application project with its associated dependency application(s)/service(s) and/or

their components

NOTE: For VistA-Legacy (Waterfall) development, complete the SQA Review Checklist.

 Assisting in the setup of the hardware servers, network components, operating system software,

application servers (such as Web Logic), and database(s) (such as Oracle, Cache) for the test

environment(s)

 Verifying with the Project Team any features, functions and/or use cases to be validation and

performance tested by TS

 Coordinating all Testing Service testing activities as conducted by TS

 Developing, reviewing, approving, and distributing Test Plans and managing the testing project

according to the stated plans

 Performing all Testing Service testing activities as defined in all Test Plans as agreed upon

between the Development Manager, the Project Team, and TS

 Writing and executing manual and automated test scripts designed to test the features, functions,

and use cases selected for the SUT

 Ensuring all TS testing output artifacts designated as configuration items are complete, accurate,

and stored in a version controlled manner within TS

http://vista.med.va.gov/testingservices/TSdocs/SOP/TS%20HeV%20Certification%20Lifecycle.doc
http://vista.med.va.gov/testingservices/TSdocs/SOP/TS%20HeV%20Certification%20Lifecycle.doc
http://vista.med.va.gov/testingservices/TSdocs/SOP/Testing%20Services%20Entrance%20Criteria%20v1_0.doc
http://vista.med.va.gov/capman/ASSESS_process.asp
http://vaww.oed.wss.va.gov/process/Library/sqa_review_checklist.xls

 Department of Veterans Affairs

IPv6 Enablement Support Services

XXXIII

 Developing, reviewing, approving, and distributing the various result reports as referenced in

Testing Service Reporting Analyses such as the Architecture Validation Analysis (AVA),

Performance Test Analysis (PTA), and/or IV&V Test Analysis Reports as needed

 Providing TS Approval to proceed at the completion of Testing Service Testing

3 Steps

3.1 Perform Preparatory Activities During Product Build

3.1.1 Project Team

 Submits a Service Request using the Testing Service Request System (TSRS) available by

following this link: http://vista.med.va.gov/testingservices/requests_tsrs.asp

NOTE: When submitting the TSRS, the Development Manager attaches the required artifacts.

 Completes and submits the Preliminary ASSESS form from the CP web page located at

http://vista.med.va.gov/capman/ASSESS_process.asp.

3.1.2 Testing Service

 Reviews the TS Request (TSR) Form submitted by the Project Team.

 Reviews all CP processes as defined in Testing Service Capacity Planning Processes to prepare

the deliverables for the project that are necessary to scope the impact from a performance and

capacity perspective.

 Reviews and scores the Preliminary ASSESS form (Capacity Planning).

3.1.3 Project Team

 Reviews the TS Entrance Criteria to ensure compliance.

 Conducts subsequent focused project calls with TS and other appropriate stakeholders [e.g.,

Application Structure and Integration Service (ASIS) (http://vista.med.va.gov/asis/default.htm),

Technology Evaluation Team (TET), Technology Modernization Project (TMP)] to discuss

specifics relating to the Elaboration Phase and future engagement flow activities.

 Provides any updated information identified since the initial project kick-off meeting such as:

1. Modified application project schedule with focus on proposed dates for EIE Operational

Readiness Review (ORR) and Initial Operating Capability (IOC) testing, to be further refined

during a subsequent high level meeting with OI-wide stakeholder representation.

2. Modified IRA, Stakeholder Request, or Vision Document and any other pertinent

documentation.

3. Modifications to the project’s intended architecture, business workload, scope, dependencies,

and project milestones.

4. Changes to the most critical use-cases and workflow, and proposed plans for rehosting/re-

engineering those use-cases.

5. Modification of key representatives to be involved throughout the testing process lifecycle.

 Updates ASSESS information in a draft of the Final ASSESS form. The form is found on the CP

Web page located at http://vista.med.va.gov/capman/ASSESS_process.asp

http://vista.med.va.gov/testingservices/TSdocs/SOP/Testing%20Services%20Reporting%20Analyses%20v1_0.doc
http://vista.med.va.gov/testingservices/requests_tsrs.asp
http://vista.med.va.gov/capman/ASSESS_process.asp
http://vista.med.va.gov/testingservices/TSdocs/SOP/Testing%20Services%20Capacity%20Planning%20Processes%20v1_1.doc
http://vista.med.va.gov/asis/default.htm
http://vista.med.va.gov/capman/ASSESS_process.asp

 Department of Veterans Affairs

IPv6 Enablement Support Services

XXXIV

3.1.4 Testing Service

 Ensures that necessary key representatives (from TS perspective) attend subsequent focused

application project calls and subsequent meetings regarding the project.

 Reviews all Project Team TS Entrance Criteria as referenced in the Testing Service Entrance

Criteria that must be satisfied before acceptance into Testing Service for formal product review.

 Reviews TS Entrance Criteria as referenced in the Testing Service Entrance Criteria to provide

information necessary for entry into TS.

 Reviews all CP Processes as defined in Testing Service Capacity Planning Processes to prepare

the deliverables for the project that are necessary to scope the impact from a performance and

capacity perspective.

 Acknowledges submitted Service Request and expands to include all relevant project artifacts,

including proposed entry dates into Testing Service for approval and/or certification testing

process.

3.1.5 Project Team

 Completes and submits the Final ASSESS form from the CP web page located at

http://vista.med.va.gov/capman/ASSESS_process.asp

 Performs Product Component Test, Component Integration Test, System Test, and User

Functionality Test and provides the test results.

 Ensures that all final application builds are viable, have received SQA certification, and are ready

for testing before entering TS. Viable builds are defined as being the application project with its

associated dependency application(s)/service(s) and/or their components and all artifacts required

in the Testing Service Entrance Criteria.

NOTE: For VistA-Legacy (Waterfall) development, complete the SQA Review Checklist.

3.1.6 Testing Service

 Ensures that key representatives attend all subsequent focused application project kick-off calls.

 Determines roles and responsibilities of Testing Service and SUT personnel for all activities.

 Reviews and scores the Final ASSESS form (Capacity Planning).

 Reviews all documentation for the SUT and dependency application(s)/service(s) and/or their

components.

 Analyzes the requirements necessary to install the databases for the SUT in the Test Center. This

includes determination of the system to be used, size, method or technique, and responsibility for

populating all VistA, Cache, Oracle, SQL Server, and/or other databases used by the SUT.

1. Determine volumes of data necessary to support the performance testing for all databases

used by the SUT. Use the Package Resource Evaluation (PRE), Package Event Modeling

Analysis (PEMA) and Package User Modeling Analysis (PUMA) reports as needed. PRE,

PEMA and PUMA reports are defined in Testing Service Capacity Planning Processes.

2. Determine methods for populating databases with additional data volume to support the

performance tests.

 Analyzes the system environment requirements necessary for installation of the SUT.

 Defines approach for both IV&V and Performance Engineering testing activities.

http://vista.med.va.gov/testingservices/TSdocs/SOP/Testing%20Services%20Entrance%20Criteria%20v1_0.doc
http://vista.med.va.gov/testingservices/TSdocs/SOP/Testing%20Services%20Entrance%20Criteria%20v1_0.doc
http://vista.med.va.gov/testingservices/TSdocs/SOP/Testing%20Services%20Entrance%20Criteria%20v1_0.doc
http://vista.med.va.gov/testingservices/TSdocs/SOP/Testing%20Services%20Capacity%20Planning%20Processes%20v1_1.doc
http://vista.med.va.gov/capman/ASSESS_process.asp
http://vista.med.va.gov/testingservices/TSdocs/SOP/Testing%20Services%20Entrance%20Criteria%20v1_0.doc
http://vaww.oed.wss.va.gov/process/Library/sqa_review_checklist.xls
http://vista.med.va.gov/testingservices/TSdocs/SOP/Testing%20Services%20Capacity%20Planning%20Processes%20v1_1.doc

 Department of Veterans Affairs

IPv6 Enablement Support Services

XXXV

 Prepares IV&V Test Plan and/or Performance Test Plan (PTP) in collaboration with Project Team

and all stakeholders on objectives, schedule, and expectations of the engagement. Project plans

are binding between TS and Project Team.

 Sets up Test Director Project for the SUT using IV&V Test Director Standards and Conventions

as a guideline for processes and naming conventions. Test Director is a testing management tool

designed to manage testing activities from requirements analysis through SUT, planning of tests,

packaging and execution of automated and manual tests, and tracking defects to completion.

 Builds the environment utilizing installation guides provided by the Project Team for the

application project as well as dependency application(s)/service(s) and/or their components.

3.2 Conduct Testing Service Focus Meeting

3.2.1 Development Manager/Project Team

 Holds Focus Meeting with TS.

 Delivers all required input artifacts as referenced in the Testing Service Entrance Criteria.

 Provides guidance and support to TS throughout the Approval and/or Certification process.

 Ensures that the SUT has successfully completed SQA

 Provides all appropriate final application builds, as one complete package, of the application

project as well as dependency application(s)/service(s) and/or their components while adhering to

the proper versioning procedure required by TS.

 Assists in installation of the SUT, including all associated databases with appropriate data

volume, in the Test Center.

 Responds to system architectural and other technical questions as needed by TS.

 Provides a demonstration of the SUT to TS as the application project is installed in the Test

Center.

3.2.2 Testing Service

 Holds Focus Meeting with the Project Team.

 Ensures that key representatives attend all subsequent focused application project calls.

 Defines the scope of each main area of review that must be met for Approval and/or Certification

and works with the Project Team regarding the level of engagement necessary to complete the

process.

 Determines roles and responsibilities of Testing Service and SUT personnel for all activities.

 Reviews all documentation for the SUT and dependency application(s)/service(s) and/or their

components.

 Verifies that the requirements for the appropriate ProPath process reviews have been completed.

 Attends demonstration of the SUT presented by the Project Team using the newly installed

application.

 Prepares Test Scripts

1. Develop IV&V and/or performance test scripts for all testable requirements including

anticipated results for each requirement using IV&V Test Director Standards and

Conventions as a guideline for process and naming standards.

2. Determine which test cases and scripts are candidates for automation.

 Department of Veterans Affairs

IPv6 Enablement Support Services

XXXVI

3. Develop, test, and debug automated testing scripts.

 Packages test scripts for execution into test sets in Test Director.

3.3 Conduct IndependentTesting Activities, Initial Build Testing

3.3.1 Project Team

 Collaborates with TS as needed on necessary system and integration testing to verify that all of

the repaired components of the application are operational as installed in the provisioned

environment. This test must embody all functional system components that make up the overall

system and verify that all system and subsystem components operate as anticipated. Subsystem

components include any dependency application(s)/ service(s) and/or their components.

 Receives and acts upon test defect(s) reported by TS.

 Coordinates with all escalation processes in conjunction with TS.

3.3.2 Testing Service

 Populates all test databases with test data.

NOTE: Task complexity is predicated on the existence of migration processes, data support

processes, and/or testable data sets.

1. Develop methods/code/scripts, if necessary, to support the population of databases with the

volume necessary to conduct IV&V and performances tests.

2. Populate databases with data.

3. Backup the populated databases, before any testing activity occur, for rollback procedures.

 Executes Independent Verification and Validation (IV&V) and Performance Tests.

1. Run tests by utilizing methodology prescribed in IV&V Test Plan and/or the Performance

Test Plan (PTP).

2. Analyze test results.

3. Provide Defect Report for tests that did not meet expected results for IV&V tests.

4. Provide Point Reports during iterative test cycles as necessary for performance related

problems.

5. Provide additional results reports as appropriate.

6. Collaborate with the Project Team and dependency project team(s) to resolve both IV&V and

performance problems as necessary and/or escalate if build is deemed unviable for testing.

NOTE: Any builds deemed unviable for testing will be declared as such to the Development

Manager and must cycle back through the Testing Service workload schedule calendar.

 Performs Roll-Out tests

1. Reinstall the SUT (if necessary) with subsequent viable build(s).

NOTE: It is expected that multiple viable builds will result from the testing efforts.

2. Evaluate the installation instructions and supporting documentation for the SUT.

 Department of Veterans Affairs

IPv6 Enablement Support Services

XXXVII

3. If failures occur and/or documentation does not support the application project as well as

dependency application(s)/service(s) and/or their components, request documentation updates

from the Project Team and return to the Prepare Test Scripts sub-activity.

3.4 Conduct Independent Testing Activities, Subsequent Build Testing

3.4.1 Project Team

 Completes new viable application builds without introducing new functionality as needed until

the application project is deemed to be acceptable for promotion.

 Provides a Service Request for the testing of the new viable build using the Testing Service

Request System (TSRS) available by following this link:

http://vista.med.va.gov/testingservice/requests_tsrs.asp

 Delivers all required input artifacts for the new build as defined in the Testing Service Entrance

Criteria.

 Provides a detailed list of both functional and design changes introduced into the new build for

the SUT as well as dependency application(s)/service(s) and/or their components.

NOTE: New functionality must not be introduced into the application project. Any deviation from

the scope of the original build test plan requires scheduling changes to the TS schedule

calendar.

 Provides documentation that the SUT has successfully completed the appropriate ProPath

processes reviews for the new build.

 Provides guidance and support to TS throughout the Approval and/or Certification process.

 Provides all appropriate builds of the application project as well as dependency

application(s)/service(s) and/or their components while adhering to the proper versioning

procedure required by TS.

NOTE: All builds must be viable and ready for testing before entering TS.

 Assists in the installation of the SUT, including all associated databases with appropriate data

volume, in the Test Center.

 Responds to system architectural and other technical questions as needed by TS.

 Collaborates with TS as needed on necessary system and integration testing to verify that all

repaired components of the application are operational as installed in the provisioned

environment. This test must embody all functional system components that make up the overall

system and verify that all system and subsystem components operate as anticipated. Subsystem

components include any dependency application(s)/ service(s) and/or their components.

 Receives and acts upon defect(s) reported by TS.

 Coordinates all escalation processes in conjunction with TS.

3.4.2 Testing Service

 Defines the scope of retest of the new build, assuming the SUT has already been through TS and

received the necessary approvals for UFT.

 Determines roles and responsibilities of Testing Service and SUT personnel for the retest

activities of the new build.

 Reviews all revisions of the documentation for the SUT as well as dependency

application(s)/service(s) and/or their components.

http://vista.med.va.gov/testingservices/requests_tsrs.asp
http://vista.med.va.gov/testingservices/TSdocs/SOP/Testing%20Services%20Entrance%20Criteria%20v1_0.doc
http://vista.med.va.gov/testingservices/TSdocs/SOP/Testing%20Services%20Entrance%20Criteria%20v1_0.doc

 Department of Veterans Affairs

IPv6 Enablement Support Services

XXXVIII

 Analyzes the database requirements necessary to install the SUT databases in the Test Center.

This includes determination of the system to be used, size, method or technique, and

responsibility for populating the all VistA, Cache, Oracle, SQL Server, and /or other databases

used by the SUT.

1. Determine volumes of data necessary to support performance testing for all databases used by

the SUT. Use the Package Resource Evaluation (PRE), Package Event Modeling Analysis

(PEMA) and Package User Modeling Analysis (PUMA) reports as needed. PRE, PEMA and

PUMA reports are defined in Testing Services Capacity Planning Processes.

2. Determine methods for populating databases with additional data volume to support the

performance tests.

 Confirms the system environment requirements necessary for reinstallation of the new build.

 Confirms the approach for retesting activities of the new build.

 Builds the environment utilizing updated installation guides provided by the Project Team for the

application project as well as dependency application(s)/service(s) and/or their components.

 Populates all test databases with test data.

NOTE: Task complexity is predicated on the existence of migration processes, data support

processes, and/or testable data sets.

1. Develop methods/code/scripts, if necessary, to support the population of databases with the

volume necessary to conduct IV&V and performances tests.

2. Populate test databases with test data.

3. Backup the populated databases before any testing activity has occurred for rollback

procedures.

 Verifies the completion of system and integration testing as accomplished by the Project Team.

This activity ensures that all repaired components of the application are operational as installed

and that the application functions as expected in the new environment. This is done prior to

commencement of the IV&V and performance testing activities as an important step to ensure the

SUT is suitable for retesting and to limit testing script issues.

 Prepares additional Test Scripts as needed.

1. Develop IV&V and/or performance test scripts for all testable requirements, including

anticipated results for each requirement using IV&V Test Director Standards and

Conventions as a guideline for process and naming standards.

2. Determine which test cases and scripts are candidates for automation.

3. Develop, test, and debug automated testing scripts.

4. Package test scripts for execution into test sets in Test Director.

 Executes Independent Verification and Validation and Performance Tests.

1. Run tests by utilizing methodology prescribed in IV&V Test Plan and/or the Performance

Test Plan (PTP).

2. Analyze test results.

3. Provide Defect Report for tests that did not meet expected results for IV&V tests.

4. Provide Point Reports during iterative test cycles as necessary for performance related

problems.

http://vista.med.va.gov/testingservices/TSdocs/SOP/Testing%20Services%20Capacity%20Planning%20Processes%20v1_1.doc

 Department of Veterans Affairs

IPv6 Enablement Support Services

XXXIX

5. Provide additional results reports as appropriate.

6. Collaborate with the Project Team and dependency project team(s) to resolve both IV&V and

performance problems as necessary and/or escalate if new build is deemed unviable for

testing.

NOTE: Any builds deemed unviable for testing will be declared as such to the Development

Manager. Subsequent testing will be scheduled based on the TS workload schedule

calendar.

 Performs Roll-Out tests

1. Reinstall the SUT (if necessary) with subsequent viable build(s).

NOTE: It is expected that multiple viable builds will result from the testing efforts.

2. Evaluate the installation instructions and supporting documentation for the SUT.

3. If failures occur and/or documentation does not lend itself well to the support of the

application project and dependency application(s)/service(s) and/or their components, request

documentation updates from Project Team and return to the Executes Independent

Verification and Validation and Performance Tests sub-activity.

3.5 Grant Testing Service Approval To Proceed

3.5.1 Project Team

 Obtains Approval to Proceed from TS

3.5.2 Testing Service

 Produces Testing Service Approval to Proceed

1. If Testing Service testing is successful, produce correlating test analysis results deliverables.

2. Issue Approval Documents that provide necessary approvals for proper versions of the SUT.

The Approval document also outlines the scope of the approval in detail.

 Issues any necessary final reports:

1. Guidance Documents

2. Result Documents

3. Approval and/or Certification Documents

 Catalogues all use-case test scripts that are associated with the final build in TS Script Library

(i.e., Test Director) for later use in comparison and load-testing exercises.

 Updates, closes-out, and backs up all files and tracking vehicles associated with the final

application project build to permit future historical viewing.

 Uses new information derived from performance testing to validate capacity forecasts and models

to improve accuracy in future evaluation exercises.

4 Processes and Related References

4.1 Related Processes

 Department of Veterans Affairs

IPv6 Enablement Support Services

XL

 Product Build

 Test Preparation

 Test and Certification

4.2 Related References

 Testing Service Web page

http://vista.med.va.gov/testingservice/default.asp

 SQA Review Checklist

http://vaww.oed.wss.va.gov/process/Library/sqa_patch_review_checklist.xls

 ProPath Reviews Guide

http://vaww.oed.wss.va.gov/process/Library/propath_reviews_guide.doc

 ASSESS Preliminary Form

http://vista.med.va.gov/capman/Assess/Assess%20Forms/ASSESS08_PRELIMINARY_FORM.

doc

 ASSESS Final Form

http://vista.med.va.gov/capman/Assess/Assess%20Forms/ASSESS08_FINAL_FORM.doc

 Project Team Kick-off Meeting Guide

http://vaww.oed.wss.va.gov/process/Library/project_team_kick-off_meeting_guide.doc

 Predictive Capacity Planning Analysis Guide

http://vista.med.va.gov/SEPG_lib/Standard%20Operating%20Procedures/192-

034%20Predictive%20Capacity%20Planning%20Analysis%20Standard.doc

 Mandatory Checklist

http://vista.med.va.gov/SEPG_lib/Standard%20Operating%20Procedures/192-

034%20Predictive%20Capacity%20Planning%20Analysis%20Standard.htm

http://vista.med.va.gov/testingservices/default.asp
http://vaww.oed.wss.va.gov/process/Library/sqa_review_checklist.xls
http://vaww.oed.wss.va.gov/process/Library/propath_reviews_guide.doc
http://vista.med.va.gov/capman/Assess/Assess%20Forms/ASSESS08_PRELIMINARY_FORM.doc
http://vista.med.va.gov/capman/Assess/Assess%20Forms/ASSESS08_PRELIMINARY_FORM.doc
http://vista.med.va.gov/capman/Assess/Assess%20Forms/ASSESS08_FINAL_FORM.doc
http://vaww.oed.wss.va.gov/process/Library/project_team_kick-off_meeting_guide.doc
http://vista.med.va.gov/SEPG_lib/Standard%20Operating%20Procedures/192-034%20Predictive%20Capacity%20Planning%20Analysis%20Standard.doc
http://vista.med.va.gov/SEPG_lib/Standard%20Operating%20Procedures/192-034%20Predictive%20Capacity%20Planning%20Analysis%20Standard.doc
http://vista.med.va.gov/SEPG_lib/Standard%20Operating%20Procedures/192-034%20Predictive%20Capacity%20Planning%20Analysis%20Standard.doc
http://vista.med.va.gov/SEPG_lib/Standard%20Operating%20Procedures/192-034%20Predictive%20Capacity%20Planning%20Analysis%20Standard.doc

 Department of Veterans Affairs

IPv6 Enablement Support Services

XLI

APPENDIX E – VistA CPRS Text Integration Utilities (TIU) Generic HL7 Interface

Handbook (Test Appendix) Example for Revision

The HL7 Logical Link File #870 – Link for DDC

Logical links describe the complete network path to a given system. The ROES sending

application is configured to receive APPLICATION ACKNOWLEDGMENTS (AA) over the

same port it is sending HL7 messages, so only one LOGICAL LINK is necessary. Your site

should already have a link ready for this use.

 The Logical Link for DDC is VADDC.

 TCP/IP Service Type for the link must be set as “Client (Sender)”.

 The IP address should be set to 10.224.54.3.

If DDC determines that a second link is necessary for APPLICATION

ACKNOWLEDGMENTS (AA), the DDC POC will contact you regarding the correct name, IP

Address and Port # to be used. If you had to edit the TCP/IP Service Type or IP address for this

link save the changes and return to the HL7 Main Menu Option.

From the HL7 Main Menu option, select the Filer and Link Management Options menu. To test

the link, select “Ping (TCP Only)” and at the prompt “Select HL LOGICAL LINK NODE:”

enter VADDC. The message “PING Worked” should be displayed. If you do not see this

message, ensure that the receiving system has been configured and setup properly. After the

PING test, the link must be started. Here’s the menu and option:

Select HL7 Main Menu Option: Filer and Link Management Options

SM Systems Link Monitor

FM Monitor, Start, Stop Filers

LM TCP Link Manager Start/Stop

SA Stop All Messaging Background Processes

RA Restart/Start All Links and Filers

DF Default Filers Startup

SL Start/Stop Links

PI Ping (TCP Only)

ED Link Edit

ER Link Errors ...

Select Filer and Link Management Options Option: SL Start/Stop Links

[This option is used to launch the lower level protocol for the appropriate

device. Please select the node with which you want to communicate, in this case,

VADDC.]

Select HL LOGICAL LINK NODE: VADDC

